Devoir surveillé n°2

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Exercice 1 (Questions de cours)

- 1. Donner le rayon de convergence R ainsi que la somme de la série entière $\sum_{n\geq 0} nx^n$.
- 2. Citer le théorème du rang.
- 3. Soit E un \mathbb{R} -espace vectoriel. Pour $f \in \mathcal{L}(E)$, donner la définition, sous forme d'ensembles, de $\ker(f)$ et $\operatorname{Im}(f)$.

Exercice 2 (Applications directes)

On pose

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

- 1. Calculer, pour $x \in \mathbb{R}$, $\det(xI_3 A)$. On trouvera de préférence une forme factorisée.
- 2. Trouver les 3 réels $\lambda_1 < \lambda_2 < \lambda_3$ tels que $\det(\lambda_i I_3 A) = 0$.
- 3. Résoudre $AX = \lambda_i X$ d'inconnue $X \in \mathbb{R}^3$ pour $i \in [1, 3]$.
- 4. Montrer que $\mathcal{B} = (u_1, u_2, u_3) = \left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right)$ est une base de \mathbb{R}^3 .
- 5. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Calculer $D = \operatorname{Mat}_{\mathcal{B}}(f)$.
- 6. On note P la matrice de \mathcal{B} dans la base canonique. Calculer P et P^{-1} et donner un lien entre A, P, D.
- 7. Justifier que $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$.
- 8. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 3

Soit $d \in \mathbb{N}^*$. On se place dans l'espace vectoriel \mathbb{R}^d et on considère un endomorphisme f de \mathbb{R}^d : $F \in \mathcal{L}(\mathbb{R}^d)$.

Soit x un vecteur non nul de \mathbb{R}^d , fixé pour tout l'exercice. On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par récurrence

$$\begin{cases} x_0 = x \\ \forall n \in \mathbb{N} \ x_{n+1} = f(x_n) \end{cases}$$

et on note $E_x = \text{Vect}(x_n, n \in \mathbb{N}) = \text{Vect}(x_0, x_1, x_2, \dots).$

1. Pour cette question seulement, on suppose que $f: \left\{ \begin{array}{cc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ \left(\begin{matrix} x \\ y \end{matrix}\right) & \mapsto & \left(\begin{matrix} x+y \\ x-2y \end{matrix}\right) \end{array} \right.$ et le vecteur fixé est $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Calculer x_1, x_2, x_3 et justifier que (x_0, x_1, x_2) est liée.

A partir d'ici, f est un endomorphisme quelconque de \mathbb{R}^d et d est quelconque.

- 2. Montrer que E_x est stable par f.
- 3. Soit F un sous-espace de \mathbb{R}^d contenant x et stable par f. Montrer que $E_x \subset F$.
- 4. Soit p le plus grand entier tel que $(x_0, x_1, \dots, x_{p-1})$ soit une famille libre.
 - (a) Justifier 1 l'existence d'un tel entier p.
 - (b) Montrer qu'il existe des réels a_0, \ldots, a_{p-1} tel que $x_p = \sum_{i=0}^{p-1} a_i x_i$
 - (c) On note $E'_x = \text{Vect}((x_i)_{i \in \llbracket 0, p-1 \rrbracket}) = \text{Vect}(x_0, \dots, x_{p-1})$. Montrer que E'_x est stable par f.
 - (d) En déduire que $E_x = E_x'$ et que la famille $\mathcal{B}_p = (x_0, \dots, x_{p-1})$ est une base de E_x .
- 1. A priori, un maximum n'existe pas toujours

- 5. On note \hat{f} l'endomorphisme de E_x obtenu comme endomorphisme induit par f sur E_x , (traduction : on a $\hat{f}: \left\{ \begin{array}{ccc} E_x & \to & E_x \\ u & \mapsto & f(u) \end{array} \right.$). Donner la matrice de \hat{f} dans la base \mathcal{B}_p .
- 6. Montrer que la famille $(Id, \hat{f}, \dots, \hat{f}^{p-1})$ est une famille libre de $\mathcal{L}(E_x)$.
- 7. (a) Montrer que pour tout entier naturel k tel que k < p

$$\hat{f}^p(x_k) = a_0 x_k + a_1 \hat{f}(x_k) + \dots + a_{p-1} \hat{f}^{p-1}(x_k)$$

(b) En déduire que l'on a $\hat{f}^p - a_{p-1}\hat{f}^{p-1} - \cdots - a_0Id = 0$

Exercice 4 Partie I

On considère la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

- 1. Calculer det(A).
- 2. Calculer l'inverse de A en faisant apparaître le détail des calculs.
- 3. Pour $i, j \in [1, 3]$, on note $A_{i,j}$ la matrice carrée de taille 2 obtenue à partie de la matrice A en supprimant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.
 - (a) Déterminer $A_{1,2}$ et $A_{3,1}$.
 - (b) On pose $B \in \mathcal{M}_3(\mathbb{R})$ définie par ses coefficients $b_{i,j} = (-1)^{i+j} \det(A_{j,i})$ pour $i, j \in [1,3]$. Déterminer B puis le produit BA.
 - (c) Que remarquons-nous sur B?
- 4. Pour une matrice $C \in \mathcal{M}_3(\mathbb{R})$, et en utilisant la notation $C_{i,j}$, rappeler la formule de développement de $\det(C)$ par rapport à la $3^{\text{ième}}$ colonne.

Partie II

Cette fois $A \in \mathcal{M}_n(\mathbb{K})$ est quelconque, et on note $A = (a_{i,j})_{1 \leq i,j \leq n}$. On utilise les notations de la partie précédente : pour $i, j \in [\![1,n]\!]$ on note $A_{i,j}$ la matrice obtenue à partir de A dans laquelle on a supprimé la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.

- 1. Soit $j \in [1, n]$. Donner la formule de développement du déterminant de la matrice A par rapport à la $j^{\text{ième}}$ colonne.
- 2. Soient j et j' deux entiers de [1, n] tels que $j \neq j'$. On considère la matrice B qui à les même colonne que A sauf la j^{ième} colonne de B qui est égale à la j'^{ième} colonne de A. Justifier que

$$\sum_{i=1}^{n} (-1)^{i+j} a_{i,j'} \det(A_{i,j}) = 0$$

- 3. Soit $C = (c_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$. On pose $D = CA = (d_{i,j})_{1 \leq i,j \leq n}$. Rappeler l'expression de $d_{i,j}$ en fonctions des coefficients de C et A.
- 4. On choisit $\forall (i,j) \in [1,n]^2$ $c_{i,j} = (-1)^{i+j} \det(A_{j,i})$. Démontrer que $CA = \det(A)I_n$.
- 5. Montrer que A est inversible ssi $\det(A) \neq 0$ et dans le cas où A est inversible on a $A^{-1} = \frac{1}{\det(A)}C$.

Partie III: applications

- 1. On considère le système linéaire suivant : $\begin{cases} x + 2y = 1 \\ 2x + y = 2 \end{cases}$
 - (a) Donner la matrice $A \in \mathcal{M}_2(\mathbb{R})$ de ce système puis l'écrire sous forme d'une égalité faisant intervenir A.
 - (b) Montrer que A est inversible, calculer son inverse grâce à la partie précédente (faire apparaître les calculs!) et résoudre le système donné.
- 2. Pour $x, y \in \mathbb{R}$ on note $A(x, y) = \begin{pmatrix} xy x & xy & x^2 y \\ y 1 & y & 2x \\ x & x & -1 \end{pmatrix}$.
 - (a) Calculer $\det(A(x,y))$.

- (b) A quelle condition(s) sur $x, y \in \mathbb{R}$ a-t-on A(x, y) inversible? Tracer rapidement l'ensemble des points $M: \begin{pmatrix} x \\ y \end{pmatrix}$ (dans un repère orthonormé) tels que A(x, y) ne soit pas inversible.
- (c) Lorsque A(x,y) est inversible, calculer $A(x,y)^{-1}$.

Exercice 5

Dans cet exercice, on s'intéresse à la fonction $f: x \mapsto \frac{1}{x^2+x-1}$, en particulier à son éventuel développement en série entière.

Partie I

- 1. Résoudre dans \mathbb{R} l'équation $x^2 + x 1 = 0$. On désignera par λ_1 et λ_2 ses racines, avec $\lambda_1 < \lambda_2$.
- 2. Question subsidiaire (sans lien direct avec cette partie) : Justifier la convergence de la série $\sum_{n\geqslant 0} \frac{1}{\sqrt{5}} \lambda_2^n$ et calculer sa somme. La réponse ne fera pas apparaître de racine carrée au dénominateur.
- 3. Déterminer deux réels α et β tels que :

$$\forall x \in \mathbb{R} \setminus \{\lambda_1, \lambda_2\} \ \frac{1}{x^2 + x - 1} = \frac{\alpha}{x - \lambda_1} + \frac{\beta}{x - \lambda_2}$$

- 4. Soit $a \in \mathbb{R}^*$. Donner en fonction de a le développement en série entière de $\frac{1}{x-a}$, en précisant sur quel intervalle est valable ce développement.
- 5. En déduire, en fonction de $\alpha, \beta, \lambda_1, \lambda_2$ le développement en série entière de f, en précisant l'intervalle sur lequel est valable ce développement.

Partie II

Voici une deuxième méthode, faisant intervenir le développement de Taylor de f.

1. Soit I un intervalle non vide et non réduit à un point, $g,h\in\mathcal{C}^n(I,\mathbb{R})$ des fonctions de classe $n\in\mathbb{N}$. Montrer que

$$(g \times h)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} g^{(k)} h^{(n-k)}$$

On rappelle que la notation $g^{(k)}$ désigne la dérivée $k^{\text{ième}}$.

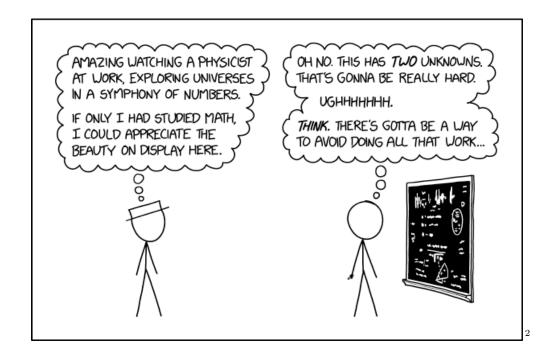
2. En remarquant qu'on a $\forall x \in]\lambda_1, \lambda_2[\ (x^2+x-1)f(x)=1,$ montrer qu'on a pour tout $n \ge 2$

$$(x^{2} + x - 1)f^{(n)}(x) + n(2x + 1)f^{(n-1)}(x) + n(n-1)f^{(n-2)}(x) = 0$$

- 3. Pour $n \in \mathbb{N}$, on pose $u_n = \frac{f^{(n)}(0)}{n!}$.
 - (a) Que valent u_0 et u_1 ?
 - (b) Montrer que si $n \ge 2$ alors $u_n = u_{n-1} + u_{n-2}$.
 - (c) Montrer que $\forall n \in \mathbb{N} \ u_n = \frac{(-1)^{n+1}}{\sqrt{5}} (\lambda_2^{n+1} \lambda_1^{n+1}).$
- 4. On considère maintenant la série entière $\sum_{n\geqslant 0}u_nx^n=\sum_{n\geqslant 0}\frac{f^{(n)}(0)}{n!}x^n$. Donner son rayon de convergence R.
- 5. On note, pour $x \in]-R, R[, S(x) = \sum_{n=0}^{+\infty} u_n x^n]$. Sans utiliser l'expression de u_n trouvée précédemment, montrer que

$$\forall x \in]-R, R[\ (x^2 + x - 1)S(x) = 1$$

6. En déduire le développement en série entière de f en précisant l'intervalle de validité.



^{2.} tiré de xkcd.com