PT 23-24 1/3

Table des matières

Ι	Séri	es convergentes	1
	I.1	Vocabulaire	1
	I.2	Séries de référence	2
	I.3	Séries à termes positifs	2
	I.4	Séries alternées	2
	I.5	Application à l'étude de suites	į
		evergence absolue	9
	II.1	Convergence d'une série complexe	:
	II.2	Propriétés	3

Ι Séries convergentes

I.1 Vocabulaire

Définition 1

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ une suite.

1. On appelle série de terme général u_n et on note $\sum u_n$ ou $\sum_{n\geq 0} u_n$ la suite (S_N) définie par

$$\forall N \in \mathbb{N} \ S_N = \sum_{n=0}^N u_n$$

On dit que S_N (le nombre) est la Nième somme partielle de cette série.

Il est possible de commencer à sommer non pas à l'indice 0 mais à un indice entier fixé n_0 (ce qui revient à poser $u_n = 0$ pour $n \in [0, n_0 - 1]$). Dans ce cas la série est notée $\sum u_n$.

2. On dit que la série $\sum u_n$ converge ssi la suite des somme partielles converge. Dans le cas contraire, on dit que la série diverge. Sa nature est d'être convergente ou divergente.

Quand elle existe, on note $S = \sum_{n=0}^{+\infty} u_n$ la limite des sommes partielles et on l'appelle somme de la série.

3. Dans le cas d'une série convergente, la suite des restes de la série est la suite définie par $R_N = \sum_{n=N+1}^{+\infty} u_n = S - S_N$

Proposition 1

Soit $(z_n)_n \in \mathbb{C}^{\mathbb{N}}$ une suite de complexes et notons $z_n = x_n + iy_n$ la forme algébrique de chaque terme. $\sum\limits_{n \in \mathbb{N}} z_n$ converge ssi $\sum\limits_{n \in \mathbb{N}} x_n$ et $\sum\limits_{n \in \mathbb{N}} y_n$ convergent. En cas de convergence on a

$$\sum_{n=0}^{+\infty} z_n = \sum_{n=0}^{+\infty} x_n + i \sum_{n=0}^{+\infty} y_n$$

Définition-Proposition 1

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$.

SI $u_n \underset{n \to +\infty}{\nrightarrow} 0$ ALORS $\sum u_n$ diverge.

Dans ce cas on dit que $\sum u_n$ diverge grossièrement.

Proposition 2

Considérons 2 séries $\sum u_n$ et $\sum v_n$. — Si $\sum u_n$ et $\sum v_n$ convergent alors $\forall \lambda, \mu \in \mathbb{C}$ $\sum (\lambda u_n + \mu v_n)$ converge. Dans ce cas

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$$

- Si $\sum u_n$ converge et $\sum v_n$ diverge alors $\sum (u_n + v_n)$ diverge. Si $\sum u_n$ et $\sum v_n$ divergent, on ne peut rien dire a priori sur $\sum (u_n + v_n)$ (cette dernière série peut être convergence) gente ou divergente, suivant les cas).

2/3 PT 23-24

I.2 Séries de référence

Proposition 3 (Séries géométriques)

Soit $q \in \mathbb{C}$. $\sum_{n \geqslant 0} q^n$ converge ssi |q| < 1 et

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}.$$

Théorème 1

Soit $\alpha \in \mathbb{R}$. $\sum_{n \geqslant 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

Théorème 2 (Taylor avec reste intégral)

Soit $f \in \mathcal{C}^{n+1}(I, \mathbb{K})$ une fonction définie sur un intervalle I et $a \in I$.

$$\forall x \in I \ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Proposition 4 (Série exponentielle)

Pour tout $x \in \mathbb{R}$ la série $\sum \frac{x^n}{n!}$ convergé et on a

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$$

I.3 Séries à termes positifs

Théorème 3

Soit $(u_n)_n$ une suite de réels **positifs**. $\sum u_n$ converge ssi la suite des sommes partielles est majorée.

Dans ce cas,
$$\sum_{n=0}^{+\infty} u_n = \sup\left(\left\{\sum_{k=0}^{N} u_n | N \in \mathbb{N}\right\}\right).$$

Théorème 4 (Comparaison des séries à termes positifs)

Soient $(u_n)_n, (v_n)_n$ des suites de réels **positifs**.

- 1. Si $u_n \leq v_n$ à partir d'un certain rang et $\sum v_n$ converge alors $\sum u_n$ converge.
- 2. Si $u_n = O_{+\infty}(v_n)$ et $\sum v_n$ converge alors $\sum u_n$ converge.
- 3. Si $u_n = o_{+\infty}(v_n)$ et $\sum v_n$ converge alors $\sum u_n$ converge.
- 4. Si $u_n \underset{+\infty}{\sim} v_n$, $\sum u_n$ et $\sum v_n$ ont la même nature.

Proposition 5

Si on a (u_n) et (v_n) positives :

- 1. Si $v_n \leq u_n$ à partir d'un certain rang et $\sum v_n$ diverge alors $\sum u_n$ diverge.
- 2. Si $v_n = o_{+\infty}(u_n)$ et $\sum v_n$ diverge alors $\sum u_n$ diverge.

Théorème 5 (Règle de d'Alembert)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N} \ u_n > 0$. Supposons que $\frac{u_{n+1}}{u_n} \to \ell$.

- 1. Si $\ell < 1$ alors $\sum u_n$ converge.
- 2. Si $\ell > 1$ alors $\sum u_n$ diverge.
- 3. Si $\ell=1$ la série peut être divergente ou convergente.

I.4 Séries alternées

Théorème 6 (Théorème des séries alternées)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

Si (u_n) est décroissante et converge vers 0 alors $\sum (-1)^n u_n$ converge.

Proposition 6 (Encadrement de la somme)

Soit $\sum (-1)^n u_n$ une série alternée comme au théorème précédent. Notons, pour $N \in \mathbb{N}$, $S_N = \sum_{n=0}^N (-1)^n u_n$ la Nième somme partielle. Alors

$$\forall N \in \mathbb{N} \ S_{2N+1} \leqslant \sum_{n=0}^{+\infty} (-1)^n u_n \leqslant S_{2N}$$

Proposition 7

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, décroissante et convergeant vers 0. Notons $v_n=(-1)^nu_n$ pour tout $n\in\mathbb{N}$

Notons, pour $N \in \mathbb{N}$, $R_N = \sum_{n=N+1}^{+\infty} v_n$ le reste de rang N de la série convergente $\sum v_n$. Alors pour tout $N \in \mathbb{N}$

- 1. R_N est du signe de v_{N+1} (son premier terme).
- 2. $|R_N| \leq |v_{N+1}|$

I.5 Application à l'étude de suites

Proposition 8

Soit $(u_n)_n$ une suite. $(u_n - u_0)_{n \in \mathbb{N}}$ à la même limite (ou absence de limite) que $\sum (u_{n+1} - u_n)$.

IIConvergence absolue

II.1 Convergence d'une série complexe

Définition 2

Soit $\sum u_n$ une série complexe. On dit que cette série est absolument convergente ssi $\sum_{n\geq 0} |u_n|$ converge (prononcer module ou valeur absolue suivant les cas).

Théorème 7

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. Si $\sum u_n$ converge absolument alors $\sum u_n$ converge et on a

$$\left| \sum_{n=0}^{+\infty} u_n \right| \leqslant \sum_{n=0}^{+\infty} |u_n|$$

Proposition 9 Soit $z \in \mathbb{C}$. $\sum_{n \geqslant 0} \frac{z^n}{n!}$ converge.

Lorsque $x \in \mathbb{R}$ on a de plus $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$.

II.2 Propriétés

Proposition 10

Soient $(u_n), (v_n) \in \mathbb{C}^{\mathbb{N}}$

- 1. Si $|u_n| \leq |v_n|$ et $\sum v_n$ converge absolument alors $\sum u_n$ converge absolument.
- 2. Si $u_n = O_{+\infty}(v_n)$ et $\sum v_n$ converge absolument alors $\sum u_n$ converge absolument.
- 3. Si $u_n = o_{+\infty}(v_n)$ et $\sum v_n$ converge absolument alors $\sum u_n$ converge absolument.
- 4. Si $u_n \sim v_n$ alors $\sum v_n$ converge absolument si et seulement si $\sum u_n$ converge absolument.

Théorème 8

Soient $\sum a_n$ et $\sum b_n$ deux séries de complexes absolument convergentes.

Pour tout $n \in \mathbb{N}$ on pose $c_n = \sum_{k=0}^n a_k b_{n-k}$. Alors la série $\sum c_n$ converge absolument et $\sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} a_n \times \sum_{n=0}^{+\infty} b_n$

Pour $z \in \mathbb{C}$ quelconque, on définit $\exp(z)$ par $\exp(z) = e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.