Devoir maison 2

Devoir de préparation du DS 1.

Exercice 1

Soient $\alpha, \beta \in \mathbb{R}$. On s'intéresse à la nature de la série $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}}$ suivant les valeurs de α et β

- 1. Question préliminaire : si on veut évaluer des sommes partielles, quel sera le premier indice de chaque somme?
- 2. On suppose $\alpha > 1$. Trouver un réel $\gamma > 1$ tel que $\frac{1}{n^{\alpha}(\ln(n))^{\beta}} = o_{+\infty}\left(\frac{1}{n^{\gamma}}\right)$. Conclure sur la nature de la série dans ce cas.
- 3. On suppose $\alpha < 1$. Trouver un réel $\gamma \leqslant 1$ tel que $\frac{1}{n^{\gamma}} = o_{+\infty}\left(\frac{1}{n^{\alpha}(\ln(n))^{\beta}}\right)$. Conclure.
- 4. On suppose maintenant $\alpha = 1$. Déterminer la nature de la série $\sum_{n \geqslant 2} \frac{1}{n(\ln(n))^{\beta}}$ suivant la valeur de β en utilisant une comparaison série-intégrale.
- 5. Résumer, dans un tableau, la nature des séries de Bertrand suivant les valeurs de α et β .
- 6. On suppose maintenant α et β strictement positifs. Que dire de la série $\sum \frac{(-1)^n}{n^\alpha \ln(n)^\beta}$?

Indications:

1.

- 2. Revenir à la définition de $o_{+\infty}$ pour trouver une condition supplémentaire que doit vérifier γ .
- 3. Idem
- 4. Nous avons un exemple complet d'application : la preuve du théorème donnant la nature des séries de Riemann.

Pour un calcul de primitive, remarquer que $x\mapsto \frac{1}{x}$ est la dérivée de $u:x\mapsto \ln(x)$ **Remarque:** en considérant seulement le cas $\beta>0$, on a $\frac{1}{n\ln(n)^{\beta}}=o_{+\infty}(\frac{1}{n})$ et on ne peut pas conclure sur la convergence par comparaison car la série $\sum \frac{1}{n}$ diverge. De même, pour tout $\alpha>1$, $\frac{1}{n^{\alpha}}=o_{+\infty}(\frac{1}{n\ln(n)^{\beta}})$ et on ne peut pas conclure sur la divergence par comparaison car $\sum \frac{1}{n^{\alpha}}$ converge.

On est ici face à une série que l'on ne sait pas comparer aux séries de Riemann en utilisant notre théorème.

- 5. On peut, par exemple, indiquer des valeurs de α en lignes et celles de β en colonnes.