PT 23-24 1/4

Table des matières

Ι	Continuité	-
	1 Domaines de définition	
	2 Fonctions continues	
II	Dérivées partielles	:
	Dérivées partielles .1 Dérivabilité	
	.2 Taylor-Young	
	.3 Équations aux dérivées partielles	;
II	extrema	
	extrema I.1 Points critiques	
	I.2 Matrice hessienne	
	I.3 Étude des extrema	

I Continuité

I.1 Domaines de définition

Définition 1

Soit $r \in [0, +\infty[$ et $X_0 \in \mathbb{R}^p$

- 1. La boule ouverte de rayon r et de centre X_0 est $B(X_0, r) = \{X \in \mathbb{R}^p | ||X_0 X|| < r\}$.
- 2. La boule fermée de rayon r et de centre X_0 est $\overline{B}(X_0,r) = \{X \in \mathbb{R}^p | \|X_0 X\| \leq r\}$.

Définition-Proposition 1

Soit A une partie de \mathbb{R}^p . Les propositions suivantes sont équivalentes.

- 1. il existe $X_0 \in \mathbb{R}^p$ et r > 0 tels que $A \subset \overline{B}(X_0, r)$.
- 2. pour tout $X_0 \in \mathbb{R}^p$ il existe r > 0 tel que $A \subset \overline{B}(X_0, r)$.
- 3. il existe $M \in \mathbb{R}^+$ tel que $\forall X \in A ||X|| \leq M$.

Dans ce cas, on dit que A est une partie bornée de \mathbb{R}^p .

Définition 2

Soit A une partie de \mathbb{R}^p .

1. On dit que A est une partie **ouverte** de \mathbb{R}^p (on dit aussi que A est un ouvert) ssi

$$\forall X_0 \in A \exists r > 0 \ B(X_0, r) \subset A$$

2. On dit que A est une partie **fermée** de \mathbb{R}^p ssi \overline{A} (son complémentaire) est une partie ouverte.

Définition 3

Soit A une partie de \mathbb{R}^p et $X_0 \in \mathbb{R}^p$.

- 1. On dit que X_0 est un point intérieur à A ssi $\exists r > 0 \ B(X_0, r) \subset A$. En particulier $X_0 \in A$.
- 2. On dit que X_0 est un point extérieur à A ssi $\exists r > 0$ $B(X_0, r) \subset \mathbb{R}^p \backslash A$. En particulier $X_0 \notin A$ et X_0 est intérieur au complémentaire de A.
- 3. On dit que X_0 est un point adhérent à A ssi $\forall r > 0$ $B(X_0, r) \cap A \neq \emptyset$. Cette fois on n'a pas forcément $X_0 \in A$. Par contre, X_0 n'est pas extérieur à A.
- 4. On dit que X_0 est un point frontière de A ssi X_0 est à la fois adhérent et pas intérieur à A. De manière équivalente, pour tout r > 0, la boule ouverte $B(X_0, r)$ a une intersection non vide avec l'intérieur et l'extérieur de A.

Proposition 1

Soit A une partie non vide de \mathbb{R}^p . On note $B = \mathbb{R}^p \backslash A$ le complémentaire de A. Soit $X_0 \in \mathbb{R}^p$

- 1. X_0 est intérieur à A ssi X_0 n'est pas adhérent à B.
- 2. X_0 est adhérent à A ssi X_0 n'est pas intérieur à B.
- 3. A est ouvert ssi tout point de A est intérieur à A.
- 4. A est fermé ssi tout point adhérent à A est un point de A.
- 5. Tout point de A est adhérent à A.
- 6. Tout point intérieur à A est un point de A.

2/4 PT 23-24

I.2 Fonctions continues

Définition 4

Soit A une partie de \mathbb{R}^p et $f: A \to \mathbb{R}^n$. Soit $\ell \in \mathbb{R}^n$.

1. Soit a un point adhérent à A. On dit que f admet ℓ comme limite en a ssi

$$\forall \varepsilon > 0 \exists \alpha > 0 \forall x \in A \ \|x - a\| \leqslant \alpha \Rightarrow \|f(x) - \ell\| \leqslant \varepsilon$$

Il faut comprendre ||x-a|| comme la norme dans \mathbb{R}^p et $||f(x)-\ell||$ comme la norme dans \mathbb{R}^n .

2. Soit $a \in A$. On dit que f est continue en a ssi

$$\forall \varepsilon > 0 \exists \alpha > 0 \forall x \in A \ \|x - a\| \leqslant \alpha \Rightarrow \|f(x) - f(a)\| \leqslant \varepsilon$$

f est **continue** sur A ssi f est continue en tout point de A.

Proposition 2

Soit $f: A \to \mathbb{R}$ une fonction continue où A est une partie de \mathbb{R}^p .

- 1. L'ensemble $\{X \in A; f(X) > 0\}$ est un ouvert.
- 2. Les ensembles $\{X \in A; f(X) = 0\}$ et $\{X \in A; f(X) \ge 0\}$ sont des fermés.

Théorème 1

Soit $f: A \to \mathbb{R}^n$ où $A \subset \mathbb{R}^p$.

- 1. On note $f = (f_1, \dots, f_n)$ les fonctions coordonnées de f. f est continue (en un point ou sur A) si et seulement si toutes les f_i sont continues.
- 2. Une somme de fonctions continues est continue, le produit d'une fonction continue par un réel est continue $(\mathcal{C}(A,\mathbb{R}^n))$ est un \mathbb{R} -espace vectoriel)
- 3. Si n = 1 (fonctions à valeurs réelles), le produit de deux fonctions continues est encore continue. L'inverse d'une fonction continue qui ne s'annule pas est continue.
- 4. Soit $g: U \to \mathbb{R}^m$ telle que $f(A) \subset U$. Si f et g sont continues alors $g \circ f: A \to \mathbb{R}^m$ est continue sur A.

Théorème 2 (Image d'un fermé borné)

Soit $A \subset \mathbb{R}^p$ fermée et bornée et $f: A \to \mathbb{R}^n$

- 1. Si f est continue sur A, alors f(A) est une partie fermée et bornée de \mathbb{R}^n .
- 2. Si n=1 et que $f:A\to\mathbb{R}$ est continue, alors f est bornée et atteint ses bornes : $\inf_{x\in A}(f(x))=\min_{x\in A}(f(x))$ et $\sup_{x\in A}(f(x))=\max_{x\in A}(f(x))$.

II Dérivées partielles

II.1 Dérivabilité

Définition 5

Soit
$$f: \left\{ \begin{array}{ccc} U & \to & \mathbb{R}^n \\ (x,y,z) & \mapsto & f(x,y,z) \end{array} \right.$$
 où $U \subset \mathbb{R}^p$. Soit $a=(x_0,y_0,z_0)$ un point **intérieur** à U .
On dit que f possède une dérivée partielle par rapport à x en $a=(x_0,y_0,z_0)$ ssi l'application partielle $x\mapsto 0$

On dit que f possède une dérivée partielle par rapport à x en $a=(x_0,y_0,z_0)$ ssi l'application partielle $x\mapsto f(x,y_0,z_0)$ (qui est définie sur un intervalle centré en x_0 , car a est intérieur) est dérivable en x_0 . Ce nombre dérivé est alors noté $\frac{\partial f}{\partial x}(x_0,y_0,z_0)$ ou $\partial_1 f(x_0,y_0,z_0)$.

On définit de même $\frac{\partial f}{\partial y}$ et $\frac{\partial f}{\partial z}$.

Définition 6

Soit U un **ouvert** de \mathbb{R}^p et $f:U\to\mathbb{R}^n$. On dit que f est de classe \mathcal{C}^1 sur U ssi f possède p dérivées partielles sur U et que ces fonctions de p variables sont continues sur U.

Définition 7

Soit $U \subset \mathbb{R}^p$ un ouvert et $f: U \to \mathbb{R}$ (remarquez le cas n=1). Si f possède des dérivées partielles en $(x_0, y_0, z_0) \in U$,

le gradient de
$$f$$
 en (x_0, y_0, z_0) (noté $\overrightarrow{grad} f(x_0, y_0, z_0)$) est le vecteur $\begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0, z_0) \\ \frac{\partial f}{\partial y}(x_0, y_0, z_0) \\ \frac{\partial f}{\partial z}(x_0, y_0, z_0) \end{pmatrix}$.

En physique, le gradient est parfois noté ∇f

PT 23-24 3/4

II.2 Taylor-Young

Théorème 3

Soit $f: U \to \mathbb{R}^n$ une fonction \mathcal{C}^1 , où U est un ouvert de \mathbb{R}^2 . Soit $(x_0, y_0) \in U$. Pour (h, k) de norme "assez petite"

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o_{(h,k) \to (0,0)}(\|(h,k)\|)$$

Corollaire 1

Une fonction de classe C^1 est continue.

Définition 8

Soit $f: U \to \mathbb{R}$ une fonction de deux variables, de classe \mathcal{C}^1 sur l'ouvert U. Soit $X_0 = (x_0, y_0) \in U$.

Le plan $\mathcal{P}_0: z = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$ est le plan tangent à la surface représentative de f au point X_0 .

Proposition 3 (Composition)

Soit $f: U \to \mathbb{R}^n$ (U ouvert) et $g: t \mapsto (x(t), y(t))$ une fonction définie sur un intervalle I et à valeurs dans U.

Si f et g sont de classe \mathcal{C}^1 , alors $\varphi = f \circ g : t \mapsto f(x(t), y(t))$ est de classe \mathcal{C}^1 sur I et pour $t \in I$

$$\varphi'(t) = x'(t)\frac{\partial f}{\partial x}(x(t), y(t)) + y'(t)\frac{\partial f}{\partial y}(x(t), y(t)).$$

Proposition 4 (Composition, changement de variables)

On considère $f:U\to\mathbb{R}^n$ et $g:V\to\mathbb{R}^p$ où U est un ouvert de \mathbb{R}^p et V un ouvert de \mathbb{R}^m . Si $g(V)\subset U$ et que les fonctions f,g sont de classe \mathcal{C}^1 alors $f\circ g$ est de classe \mathcal{C}^1 sur V.

Si on note $f:(u_1,\ldots,u_p)\mapsto f(u_1,\ldots,u_p)$ et $g:(x_1,\ldots,x_m)\mapsto g(x_1,\ldots,x_m)$ et $g=(g_1,\ldots g_p)$ les fonctions coordonnées, alors $f\circ g$ dépend des variables x_1,\ldots,x_m et pour $i\in [\![1,m]\!]$ et $a\in V$

$$\frac{\partial f \circ g}{\partial x_i}(a) = \sum_{j=1}^p \frac{\partial g_j}{\partial x_i}(a) \frac{\partial f}{\partial u_j}(g(a))$$

Proposition 5 (Un exemple)

Avec les mêmes notations que la proposition précédente.

On note $f:(u,v)\mapsto f(u,v)$ et $g:(x,y)\mapsto \begin{pmatrix} \alpha(x,y)\\ \beta(x,y) \end{pmatrix}$ (f,g) sont des fonctions de deux variables et g est à valeurs dans \mathbb{R}^2)

Alors $h = f \circ g : (x, y) \mapsto h(x, y) = f(\alpha(x, y), \beta(x, y))$ et on a

$$\frac{\partial h}{\partial x}(x_0, y_0) = \frac{\partial \alpha}{\partial x}(x_0, y_0) \frac{\partial f}{\partial u}(\alpha(x_0, y_0), \beta(x_0, y_0)) + \frac{\partial \beta}{\partial x}(x_0, y_0) \frac{\partial f}{\partial v}(\alpha(x_0, y_0), \beta(x_0, y_0))$$

$$\frac{\partial h}{\partial y}(x_0, y_0) = \frac{\partial \alpha}{\partial y}(x_0, y_0) \frac{\partial f}{\partial u}(\alpha(x_0, y_0), \beta(x_0, y_0)) + \frac{\partial \beta}{\partial y}(x_0, y_0) \frac{\partial f}{\partial v}(\alpha(x_0, y_0), \beta(x_0, y_0))$$

Définition 9 (Dérivées d'ordre supérieur)

Comme pour les fonctions d'une variable, on peut évidemment continuer à dériver des dérivées partielles si elles sont dérivables. On introduit alors la classe \mathcal{C}^2, \ldots et les justifications sont les mêmes que pour la classe \mathcal{C}^1

La notation est la suivante :

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right), \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

Théorème 4 (Théorème de Schwarz)

Si f est de classe \mathcal{C}^2 sur un ouvert U de \mathbb{R}^p , alors $\frac{\partial^2 f}{\partial x^2}y = \frac{\partial^2 f}{\partial y^2}x$ (et de même avec toutes les autres variables éventuelles).

II.3 Équations aux dérivées partielles

III Extrema

III.1 Points critiques

Définition 10

Soit $f: A \to \mathbb{R}$ une fonction à valeurs **réelles** et $A \subset \mathbb{R}^2$. Soit $a_0 = (x_0, y_0) \in A$. On dit que f possède un maximum local (resp. minimum local) ssi il existe un r > 0 tel que

$$\forall (x,y) \in A \cap \overline{B}(a_0,r) \ f(x,y) \leqslant f(x_0,y_0)$$

(resp. $f(x,y) \ge f(x_0,y_0)$).

4/4 PT 23-24

Définition 11

Soit $f: A \to \mathbb{R}$ une fonction à valeurs réelles et $A \subset \mathbb{R}^2$. Un point a intérieur à A est appelé **point critique** de f ssi $\overrightarrow{grad} f(a) = \vec{0}$ (toutes les dérivées partielles s'annulent simultanément).

Proposition 6

Soit $f: U \to \mathbb{R}$ une fonction à valeurs réelles et $U \subset \mathbb{R}^2$ un **ouvert**. Soit $X_0 \in U$. Si f possède un extremum local en X_0 alors X_0 est un point crique de f.

III.2 Matrice hessienne

Théorème 5 (Taylor-Young, ordre 2)

Soit $f \in \mathcal{C}^2(U,\mathbb{R})$ où U est un ouvert non vide de \mathbb{R}^2 . Soit $(x_0,y_0) \in U$ et $(h,k) \in \mathbb{R}^2$ tel que $(x_0+h,y_0+k) \in U$.

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + \frac{1}{2!} \left(h^2 \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + 2hk \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) + k^2 \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \right) + o_0(h^2 + k^2).$$

Il faut comprendre ce o_0 comme représentant une limite quand $(h,k) \to (0,0)$.

Définition 12

Soit $f \in \mathcal{C}^2(U,\mathbb{R})$ où U est un ouvert non vide de \mathbb{R}^2 .

Soit $(x_0, y_0) \in U$ fixé. La matrice hessienne de f au point (x_0, y_0) est la matrice

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix}$$

III.3 Étude des extrema

Théorème 6

Soit $f \in \mathcal{C}^2(U,\mathbb{R})$ où U est un ouvert non vide de \mathbb{R}^2 . Soit $X_0 \in U$ un point critique de f.

Notons également H la matrice hessienne de f au point X_0 et λ, μ ses valeurs propres réelles.

Cas $\lambda, \mu > 0$: f atteint un minimum local en X_0 .

Cas $\lambda, \mu < 0$: f atteint un maximum local en X_0 .

Cas λ, μ de signes stricts opposés : f n'a ni maximum local ni minimum local en X_0 . On a un point selle ou point col en X_0 .

Cas $\lambda \mu = 0$: on ne peut pas conclure.

Remarquons que $det(H) = \lambda \mu$ et $tr(H) = \lambda + \mu$. Ainsi on pourra distinguer les 4 cas précédents sans connaître λ ni μ .