Sous-espaces

Exercice 1

Déterminer si les ensembles suivants sont des \mathbb{R} -ev :

- 1. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $F = \ker(A) = \{X \in \mathbb{R}^k | AX = 0\}$ en précisant la valeur de k.
- 2. L'ensemble des fonctions 7-périodiques de $\mathbb{R}^{\mathbb{R}}$. Donner un exemple d'un telle fonction (non constante).
- 3. $\{P \in \mathbb{C}[X] | P(0) = 1\}.$
- 4. $\{(x,y,z) \in \mathbb{R}^3 | x+2y+z=0 \text{ et } 2x+y+z=0 \}$. Donner une base de cet espace.

Exercice 2

Montrer que $F = \{P \in \mathbb{C}_3[X] | P'(1) = 0\}$ est un \mathbb{C} -espace vectoriel et en donner une base.

Familles génératrices, libres

Exercice 3

- 1. Montrer que $\mathbb{K}_1[X] = \text{Vect}(X 1, X + 1)$.
- 2. Montrer que $\mathbb{R}^2 = \text{Vect}((-1,1),(1,1))$.
- 3. Donner une base du sev de \mathbb{R}^4 : $\begin{cases} 2x+z-t=0\\ x+y-z+t=0 \end{cases}$
- 4. Donner une équation cartésienne de $\operatorname{Vect}\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$), c'est à dire une CNS pour que $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ soit dans

Exercice 4

Montrer que 1, cos, sin est une famille libre de $\mathbb{R}^{\mathbb{R}}$. Est-ce que $id_{\mathbb{R}} \in \text{Vect}(1, \cos, \sin)$?

Donner la dimension et une base de $S_n(\mathbb{K})$ l'ensemble des matrice carrée de taille n symétriques. Même question pour l'ensemble des matrices antisymétriques.

Somme, supplémentaires

Exercice 6

On se place dans $E = \mathbb{R}^4$ et on pose $u_1 = (1,2,0,1), u_2 = (2,1,3,1), u_3 = (2,4,0,2), v_1 = (1,2,1,0), v_2 = (2,2,2,2), v_3 = (2,2,2,2), v_4 = (2,2,2,2), v_4 = (2,2,2,2), v_5 = (2,2,2,2), v_6 = (2,2,2,2), v_7 = (2,2,2,2), v_8 = (2,2,2,2$ $(-1,1,1,1), v_3 = (2,-1,0,1).$

- 1. Déterminer $\operatorname{rg}(u_1, u_2, u_3), \operatorname{rg}(v_1, v_2, v_3)$ ainsi que des base de $F = \operatorname{Vect}(u_1, u_2, u_3)$ et $G = \operatorname{Vect}(v_1, v_2, v_3)$.
- 2. Déterminer les dimensions ainsi que des bases de $F \cap G$ et F + G.

Exercice 7

- 1. Montrer que $\mathbb{C} = \text{Vect}(1) \oplus \text{Vect}(i)$, $\mathbb{C} = \text{Vect}(1) \oplus \text{Vect}(e + \pi i)$ (somme de \mathbb{R} -ev).
- 2. Soient F = Vect((1, 2, 3), (2, 1, 3)) et G = Vect(3, 2, 1). Montrer que $\mathbb{R}^3 = F \oplus G$.
- 3. Soient $F = \{P \in \mathbb{K}_n[X] | P(0) = 0\}$ et $G = \{P \in \mathbb{K}_n[X] | \deg P \leq 0\}$. Montrer que ces ensembles sont des \mathbb{K} -ev et qu'ils sont supplémentaires dans $\mathbb{K}[X]$.

Coordonnées, changement de base

Exercice 8

On considère la famille $(P_1, P_2, P_3) = (X^2 + X + 1, X^2 - X + 1, X^2 - X - 1)$. Donner sa matrice dans la base canonique de $\mathbb{K}_2[X]$. Montrer ensuite que c'est une base puis donner les coordonnées de $X^2 + 3X - 7$ dans cette base.

Exercice 9
On note \mathcal{B}_{can} la base canonique de \mathbb{R}^3 . Montrer que $\mathcal{B} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = (u, v, w)$ est une base. On note

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 les coordonnées dans \mathcal{B}_{can} et $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ ses coordonnées dans \mathcal{B} . Donner le lien entre X et X'

Exercice 10
Considérons $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ la matrice d'une famille (u, v) dans la base $\mathcal{B} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$).

Donner la matrice de (u, v) dans la base canonique de \mathbb{R}^2 .

Reprendre l'exercice en considérant que A est la matrice d'une famille (P,Q) dans $\mathcal{B}:(2X-3,X+1)$ qui est une base de $\mathbb{R}_1[X]$.

Exercices théoriques

Exercice 11

Soient E un \mathbb{K} -ev de dimension $n \ge 2$. Soient H, H' deux hyperplans distincts de E. Calculer $\dim(H \cap H')$

Exercice 12

Soient $A, B \in M_n(\mathbb{K})$. On note F le sous espace de \mathbb{K}^n engendré par les colonnes de A.

- 1. Montrer que les colonnes de AB sont dans F.
- 2. Montrer que $rg(AB) \leq rg(A)$ et $rg(AB) \leq rg(B)$.
- 3. Question subsidiaire. A quelle condition suffisante (mais non nécessaire) à-t-on rg(AB) = rg(A)?

Exercice 13

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Donner un entier d tel que $(I_n, M, M^2, \dots, M^d)$ est liée.

Notons $\sum_{k=0}^d \lambda_k M^k = 0$ une relation linéaire non triviale et supposons en plus que $\lambda_0 \in 0_{\mathbb{K}}$. Montrer que M est inversible.