Techniques de base

Exercice 1

Montrer que les fonctions suivantes sont continues :

1.
$$f_1: x \mapsto \int_{0}^{\frac{\pi}{2}} \cos^x(t) dt \text{ sur } \mathbb{R}^+.$$

2.
$$f_2: x \mapsto \int_0^{+\infty} \sqrt{t}e^{-xt} dt$$
 sur $[a, +\infty[$ pour $a > 0$, puis sur \mathbb{R}_+^* .

Exercice 2

Montrer que les fonctions suivantes sont de classe \mathcal{C}^1 :

1.
$$f_1: x \mapsto \int_{-\pi}^{\pi} \ln(1+x\sin(t))dt$$
 sur $[-a,a]$ pour $a \in]0,1[$. Sur quel intervalle f_1 est-elle \mathcal{C}^1 finalement?

2.
$$f_2: x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt \text{ sur } \mathbb{R}.$$

Applications

Exercice 3

1. Étudier l'existence, la continuité et la dérivabilité sur $\mathbb R$ de

$$f: x \mapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt.$$

2. Déterminer une équation différentielle simple vérifiée par f et en déduire une valeur simple pour f(x) (on pourra admettre que $f(0) = \frac{\sqrt{\pi}}{2}$).

Exercice 4 On pose $f: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{1+xt} dt$.

- 1. Montrer que f est bien définie sur $[0, +\infty[$.
- 2. Montrer que f est \mathcal{C}^{∞} sur $[0, +\infty[$.
- 3. Exprimer et calculer $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.

Exercice 5

Pour
$$x, y > 0$$
, on pose $F(x, y) = \int_0^{+\infty} \frac{e^{-xt} - e^{-yt}}{t} dt$.

- 1. Pour y > 0 fixé, montrer que $x \mapsto F(x,y)$ est de classe \mathcal{C}^1 sur tout intervalle $[a, +\infty[$ où a > 0.
- 2. Justifier que la question précédente entraı̂ne la classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- 3. Calculer $\frac{\partial F}{\partial x}$ et en déduire la valeur de F(x,y) pour tout x,y>0.