Devoir surveillé n°7

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer le devoir.

Exercice 1 (Cours)

- 1. Calculer l'image de la fonction $f: x \mapsto xe^{-x}$ définie sur \mathbb{R} . En justifiant...
- 2. Donner 4 conditions nécessaires et suffisantes pour que $A \in \mathcal{M}_{\ell}3)(\mathbb{R})$ soit inversible.
- 3. Donner une équation du plan (dans \mathbb{R}^3) $P = \text{Vect}\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$).
- 4. Citer le théorème des valeurs intermédiaires.

Exercice 2

On pose $E = \mathbb{R}_2[X]$ l'ensemble des polynômes à coefficients réels de degré 2 ou moins. On définit également la famille $\mathcal{F} = (P_1, P_2, P_3, P_4) = (X - 1, \ 2X^2 + X - 2, \ X^2 - 2X + 1, \ -2X^2 + 2X - 1)$ de vecteurs de E.

- 1. Montrer que E est un sous-espace vectoriel du \mathbb{R} -espace $\mathbb{R}[X]$.
- 2. Donner une base et la dimension de E.
- 3. Calculer la matrice M de la famille \mathcal{F} dans la base canonique de E.
- 4. La famille \mathcal{F} est-elle libre? génératrice de E?
- 5. On pose $F = \text{Vect}(P_1, P_2)$, $G = \text{Vect}(P_3, P_4)$ et $D = \text{Vect}(P_3)$. Calculer les dimensions de ces espaces.
- 6. Montrer que $\mathbb{R}_2[X] = F \oplus D$.
- 7. Soit $P = aX^2 + bX + c$ un polynôme de E. Trouver α, β, γ tels que $P = \alpha P_1 + \beta P_2 + \gamma P_3$. Qu'avons nous en fait calculé?
- 8. En déduire une condition nécessaire et suffisante sur (α, β, γ) puis sur (a, b, c) pour que $P \in F$. Nous avons trouvé une équation de F!
- 9. Montrer que $P_4 \in F$.
- 10. En déduire F + G et $F \cap G$.

Exercice 3

On souhaite étudier une suite récurrente.

Partie I

On étudie d'abord la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R}_+^* \\ x & \mapsto & x^{\frac{1}{x}} \end{array} \right.$

- 1. Justifier le fait que $f \in \mathcal{C}^{\infty}(\mathbb{R}_+^*, \mathbb{R}_+^*)$.
- 2. Montrer que l'on peut prolonger f par continuité en 0. On note encore f la fonction ainsi prolongée et définie sur \mathbb{R}^+ .
- 3. Etudier les variations de f et donner un tableau comportant les limites aux bornes.
- 4. f est-elle dérivable en 0? Préciser l'éventuelle tangente.
- 5. Décrire les éventuelles asymptotes de la courbe représentative de f.
- 6. Tracer.
- 7. Montrer que f est une bijection de]0,e] dans un intervalle à préciser.

Partie II

Soit $a \ge 1$. On pose $\varphi : t \mapsto a^t$ et on définit la suite $(u_n)_{n \in \mathbb{N}}$ de la manière suivante : $u_0 = 1$ et $\forall n \in \mathbb{N} u_{n+1} = \varphi(u_n)$. Le but de cette partie est d'étudier la convergence de la suite $(u_n)_n$. Lorsque $(u_n)_n$ converge, on note h(a) sa limite.

- 1. Que peut-on dire de $(u_n)_n$ quand a=1?
- 2. Montrer que si h(a) existe, alors $h(a) = \varphi(h(a))$.
- 3. En déduire que dans ce cas f(h(a)) = a.
- 4. Montrer que si a > 1, alors φ est strictement croissante sur \mathbb{R} .

- 5. Pour a > 1, montrer par récurrence que $u_n < u_{n+1}$ pour tout n.
- 6. On suppose maintenant $a \in]1, e^{\frac{1}{e}}]$. Montrer que $\forall n \in \mathbb{N}u_n \leqslant e$. Qu'en déduire pour la suite (u_n) ?
- 7. Si $a > e^{\frac{1}{e}}$, montrer que $u_n \to +\infty$. On pourra faire un raisonnement par l'absurde et utiliser la partie I et la question II.2.

Exercice 4 Exercice 4
Dans cet exercice, on note $C = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}$ et $\mathcal{B}_c = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

De plus on pose C_1, C_2, C_3 les 3 colonnes de C. On considère les ensembles $F = \{X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^3 | CX = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^3 | CX = \begin{pmatrix} x \\ y \end{pmatrix}$ $0_{\mathbb{R}^3}$ et $G = \text{Vect}(C_1, C_2, C_3)$

Partie I

- 1. Calculer $\det(C)$. Qu'en déduire pour C?
- 2. Montrer que F est un espace vectoriel et en calculer une base \mathcal{B}_1 .
- 3. Calculer le rang de C. Quel est le lien avec la dimension précédente?
- 4. Donner la dimension de G puis une base \mathcal{B}_2 de G.
- 5. Exhiber une combinaison linéaire à coefficients non tous nuls de C_1, C_2, C_3 .
- 6. On note $\mathcal{B} = (u, v, w)$ la famille constituée des vecteurs de \mathcal{B}_1 puis ceux de \mathcal{B}_2 . Montrer que \mathcal{B} est une base.
- 7. Qu'en déduire pour les espaces F et G?

Partie II

- 1. On pose $Q = \frac{1}{9}C$. Calculer Q^2 .
- 2. En déduire une expression de C^n pour tout $n \in \mathbb{N}$.
- 3. On pose $S = 2Q I_3$. Déduire de la question 1 la valeur de S^2 .
- 4. Soit $X \in G$. Montrer que QX = X.
- 5. Que vaut QX pour $X \in F$?
- 6. Montrer que F et G sont orthogonaux.
- 7. Quelle est l'interprétation géométrique de $\left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ X & \mapsto & QX \end{array} \right. ?$
- 8. Même question pour $X \mapsto SX$.

Exercice 5

Exercise 5
Pour $n \in \mathbb{N}$ on pose $\Delta_n : \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & P(X+1) - P(X) \\ \vdots & \vdots & \ddots & \vdots \end{array} \right.$

On cherche à calculer des sommes classiques par une méthode générale.

Partie I

- 1. Montrer que si $P \in E$ alors $\Delta_n(P) \in E$.
- 2. Soient $\alpha, \beta \in \mathbb{R}$ et $P_1, P_2 \in E$. Montrer que $\Delta_n(\alpha P_1 + \beta P_2) = \alpha \Delta_n(P_1) + \beta \Delta_n(P_2)$.
- 3. Question bonus : quelle méthode classique nous permet alors de prouver que pour $(\alpha_i)_{i \in [1,n]} \in \mathbb{R}^n$ et $P_1, \dots P_n \in \mathbb{R}^n$ E on a

$$\Delta_n \left(\sum_{i=1}^n \alpha_i P_i \right) = \sum_{i=1}^n \alpha_i \Delta_n(P_i)?$$

On ne demande pas la preuve mais seulement l'explication de la méthode.

- 4. Soit $P \in \mathbb{R}_n[X]$ tel que $\Delta_n(P) = 0$. On suppose que P possède une racine réelle ou complexe. Montrer que P=0.
- 5. Montrer que $F = \{P \in E \mid \Delta_n(P) = 0\}$ est un sous-espace vectoriel de E et en donner une base.
- 6. En quoi la dimension de F permet de conclure sur l'injectivité de Δ_n ?
- 7. Dans cette question seulement on prend n=3.
 - (a) Rappeler la base canonique ainsi que la dimension de $\mathbb{R}_3[X]$.

- (b) Donner la matrice de la famille $\mathcal{F} = (\Delta_3(P_i))_{i \in [0,3]}$ dans la base canonique (P_0, P_1, P_2, P_3) de $E = \mathbb{R}_3[X]$.
- (c) Calculer $Vect(\mathcal{F})$.
- (d) Montrer qu'il existe un unique $Q \in \mathbb{R}_3[X]$ tel que $\Delta_3(Q) = X^2$ et Q(1) = 0. Exhiber ce polynôme.
- (e) Pour $k \in \mathbb{N}$, exprimer k^2 grâce à Q. En déduire la valeur de $\sum_{k=1}^{N} k^2$ pour $N \in \mathbb{N}$.

Partie II

Pour généraliser la méthode précédente, nous introduisons une famille de polynômes.

- 1. On pose $B_k(X) = \frac{X(X-1)...(X-k+1)}{k!} = \frac{1}{k!} \prod_{i=0}^{k-1} (X-i)$ pour tout $k \in \mathbb{N}$. Par convention, $B_0 = 1$. Donner le degré et le coefficient dominant de B_k .
- 2. Donner les coefficients de B_1, B_2, B_3 .
- 3. Montrer que pour $n \in \mathbb{N}$, $B_k(n) = \binom{n}{k}$.
- 4. Montrer que $B_k(X) + B_{k+1}(X) = B_{k+1}(X+1)$.
- 5. On prend $0 \leq k < n$. Calculer $\Delta_n(B_{k+1})$ en fonction des $B_i, i \in [0, k]$.
- 6. Montrer que B_0, B_1, B_2, B_3 est une base de $\mathbb{R}_3[X]$.
- 7. Justifier rapidement que (B_0, \ldots, B_n) est une base de $\mathbb{R}_n[X]$.
- 8. On note $\mathcal{B} = (B_0, \dots, B_n)$. Calculer $\operatorname{Mat}_{\mathcal{B}}((\Delta_n(B_i))_{i \in \llbracket 0, n \rrbracket})$.
- 9. On va calculer $\sum_{k=1}^{N} k^3$.
 - (a) Vérifier que $X^3 = B_1 + 6B_2 + 6B_3$.
 - (b) En déduire un polynôme Q_3 tel que $\Delta_4(Q_3)=X^3$ et $Q_3(1)=0$
 - (c) Exprimer la somme cherchée en fonction de Q_3 puis la calculer.