Séries numériques

Antoine Louatron

Table des matières

Son	mme d'une série
I.1	Vocabulaire
I.2	Lien avec les suites
I.3	Opérations sur les séries
I Sér	ries de nombres positifs
II.1	Généralités
	2 Utilisation de fonctions monotones
II.3	3 Comparaisons
	osolue convergence
III.	.1 Série complexes
III.	.2 Exemples et contres-exemples

I Somme d'une série

Dans cette partie on considère des suites à valeurs complexes. Evidemment, tous les résultats sont vrais pour des suites à valeurs réelles...

I.1 Vocabulaire

I.1.1 Définition

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ une suite.

On appelle série de terme général u_n et on note $\sum u_n$ ou $\sum_{n\geqslant 0} u_n$ la suite (S_N) définie par

$$\forall N \in \mathbb{N} \ S_N = \sum_{n=0}^N u_n$$

On dit que S_N (le nombre) est la Nième somme partielle de cette série.

Il est possible de commencer à sommer non pas à l'indice 0 mais à un indice entier fixé n_0 (ce qui revient à considérer que les premiers termes sont nuls). Dans ce cas la série est notée $\sum_{n>n_0} u_n$.

I.1.2 Remarque

- 1. Une série est une suite, malgré le symbole de somme. On pourra donc appliquer notre cours sur les suites réelles ou complexes.
- 2. La notion qui va nous intéresser est celle de la convergence des séries, ie la convergence de la suite des sommes partielles.

I.1.3 Définition

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On dit que la série $\sum u_n$ converge ssi la suite des somme partielles converge.

Quand elle existe, on note $\sum_{n=0}^{+\infty} u_n$ la limite des sommes partielles et on l'appelle somme de la série.

I.1.4 Un point sur les notations

On peut toujours écrire un symbole $\sum_{n\geqslant 0}$, quelle que soit la nature de la série. Par contre pour sommer de 0 à $+\infty$ il faut prouver que la somme existe...

I.1.5 Remarque

On ne modifie pas la nature convergente ou divergente d'une série en modifiant la valeur de quelques premiers termes, mais on modifie sa somme (quand la série converge).

Explication Nous ne donnerons pas d'autre définition d'une somme d'un nombre infini de nombres : il s'agit de la limite, quand elle existe, d'une série.

I.1.6 Exemple

Exemple FONDAMENTAL.

Soit $q \in \mathbb{C} \setminus \{1\}$. Donner une condition sur q pour que la série $\sum q^n$ converge et calculer la somme quand c'est possible.

I.1.7 Définition

Soit $\sum\limits_{n\geqslant 0}u_n$ une série à valeurs complexes convergente de limite $\ell\in\mathbb{C}$. On peut alors poser pour tout $n\in\mathbb{N}$,

 $R_n = \ell - S_n = \sum_{n=1}^{+\infty} u_k$. C'est le reste d'ordre n de cette série.

I.1.8 M-Remarque

 $R_n \to 0$. C'est la vitesse de convergence de (R_n) vers 0 qui donne la vitesse de convergence de la série.

I.1.9 Exemple

Calculer (R_n) pour un série géométrique convergente.

I.2 Lien avec les suites

I.2.1 M-Remarque

On considère la série complexe $\sum_{n\geqslant 0}u_n$ et (S_N) la suite des sommes partielles.

Alors pour $n \ge 1$, $S_n - S_{n-1} = u_n$. On peut retrouver la suite (u_n) à partir de la série.

$$\begin{cases} S_N = \sum_{n=0}^N u_n \\ u_n = S_{n+1} - S_n \end{cases}$$

I.2.2 Proposition

Soit
$$(u_n) \in \mathbb{C}^{\mathbb{N}}$$
.

$$SI$$
 la série $\sum_{n\geqslant 0} u_n$ converge $ALORS$ $u_n \xrightarrow[+\infty]{} 0$

Preuve.

Trivial

I.2.3 Exemple

 $\sum 1$ ne converge pas, $\sum 2^{-\frac{1}{n}}$ ne converge pas.

I.2.4 Définition

On dit que la série $\sum u_n$ diverge grossièrement quand $u_n \not\to 0$.

Dans ce cas, d'après la proposition précédente, $\sum u_n$ diverge (ie ne converge pas).

I.2.5 Remarque

Dire que la série $\sum u_n$ converge, c'est aussi dire dire que les u_n deviennent "petits". Mais cela ne suffit pas.

I.2.6 Exemple

Cet exemple est fondamental. Il faut y penser à chaque fois que vous aller affirmer (une bêtise?) quelque chose sur les séries.

$$\sum_{n\geqslant 1} \frac{1}{n}$$
 diverge d'après le cours sur les suites, les TD.... Et pourtant $\frac{1}{n} \to 0$

(On a même
$$\sum_{n=1}^{N} {}^{i} nvn \underset{N \to +\infty}{\sim} \ln(N)$$
.)

Explication On va prendre la remarque introductive à rebours : on somme des termes pour retrouver u_n .

I.2.7 Proposition

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. La suite (u_n) converge ssi la série $\sum (u_{n+1} - u_n)$ converge.

Dans ce cas
$$\sum_{0}^{+\infty} (u_{n+1} - u_n) = \lim_{+\infty} u_n - u_0$$
.

Preuve.

On a pour tout $n \in \mathbb{N}$, $S_n = u_{n+1} - u_0$ donc (u_n) cv ssi (S_n) cv. (on a considéré la suite des sommes partielles...)

I.3 Opérations sur les séries

I.3.1 Proposition

Soit
$$(u_n) \in \mathbb{C}^{\mathbb{N}}$$
 et $\lambda \in \mathbb{C}$. Si $\sum_{n \geq 0} u_n$ converge alors $\sum_{n \geq 0} \lambda u_n$ converge et $\sum_{n \geq 0}^{\infty} \lambda u_n = \lambda \sum_{n \geq 0}^{\infty} u_n$.

Preuve.

Trivial

I.3.2 Remarque

La réciproque est clairement vraie si on suppose de plus $\lambda \neq 0$. Dans ce cas il suffit d'appliquer le résultat précédent avec $\frac{1}{\lambda}$ comme constante.

Explication Comme pour les sommes finies, on peut "sortir" les constantes du symbole \sum .

I.3.3 Proposition

Soient $(u_n), (v_n) \in \mathbb{C}^{\mathbb{N}}$.

$$Si \sum_{n\geqslant 0} u_n \ et \sum_{n\geqslant 0} v_n \ convergent \ alors \sum_{n\geqslant 0} \left(u_n+v_n\right) \ converge \ et \sum_{n\geqslant 0}^{\infty} \left(u_n+v_n\right) = \sum_{n\geqslant 0}^{\infty} u_n + \sum_{n\geqslant 0}^{\infty} v_n.$$

Preuve.

Clairement la somme des sommes partielles converge vers la somme des limites finies.

I.3.4 Exemple

Calculer $\sum_{0}^{\infty} \left(\frac{1}{2^{n+1}} + \frac{1}{3^n} \right)$.

Dans ce genre d'énoncé, il est sous-entendu que la convergence doit être montré avant.

I.3.5 Proposition
$$Si \sum_{n\geqslant 0} u_n \ converge \ et \sum_{n\geqslant 0} v_n \ diverge \ alors \sum_{n\geqslant 0} \left(u_n+v_n\right) \ diverge.$$

Dans le cas contraire, $\sum (u_n + v_n) - \sum u_n$ converge par les deux résultats précédentes, ie $\sum v_n$ converge. Contradiction.

I.3.6 ATTENTION

Si $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ divergent, alors on ne peut rien dire sur les séries somme ou différence : ex $\sum 1-1$.

\mathbf{II} Séries de nombres positifs

Dans cette section, on ne se préoccupe que des séries $\sum_{n\geq 0} u_n$ avec $u_n \geqslant 0$ pour tout n. Ce fait est fondamental. Les résultats ici sont faux en général.

II.1 Généralités

II.1.1 Proposition

Soit (u_n) une suite réelle positive. Alors la suite des sommes partielles de la série $\sum_{n>0} u_n$ possède toujours une

De plus elle converge ssi elle est majorée.

On remarque que $S_{n+1} - S_n = u_{n+1} \ge 0$ donc la suite des sommes partielles est croissante...

II.1.2 Exemple

Montrons que $\sum_{n \ge 1} \frac{1}{n^2}$ converge.

Pour tout n>1 on a $\frac{1}{n^2}\leqslant \frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}.$ Ainsi pour tout N>1 on a

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \le \sum_{n=1}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) = 1 - \frac{1}{N+1} \le 1$$

Ainsi $\sum_{1}^{N} \frac{1}{n^2} \leqslant 2$ et donc la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge.

II.2Utilisation de fonctions monotones

II.2.1 Théorème

Soit $\alpha \in \mathbb{R}$. La série $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

Comparaison avec l'intégrale $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$.

II.2.2 M-Exemples

La série harmonique diverge ($\alpha = 1$) car " $\frac{1}{n}$ ne tend pas assez vite vers 0".

Par contre la série $\sum_{n>1} \frac{1}{n^2}$ converge, et on peut même montrer que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

II.2.3 Cas général

Dans le cas où f est monotone, on peut se servir de la technique précédente pour étudier $\sum_{n=1}^{\infty} f(n)$.

II.2.4 Exemple

Donner un équivalent de $\ln(n!)$ en $+\infty$.

On a
$$\ln(n!) = \sum_{n=0}^{\infty} \ln(k)$$
. Ainsi $\int_{1}^{n} \ln(t) dt \leq \ln(n!) \leq \int_{2}^{n+1} \ln(t) dt$. Or $\int \ln t = t \ln t - t$ donc

$$n \ln(n) - n \le \ln(n!) \le (n+1) \ln(n+1) - (n+1) - 2 \ln(2) + 2$$

On divise le tout par $n \ln(n)$ pour obtenir par encadrement $\ln(n!) \underset{+\infty}{\sim} n \ln(n)$.

On peut même prouver que $\ln(n!) = n \ln(n) - n + o(n)$. En effet, des constantes sont négligeable devant n et on peut montrer $\ln(n+1) \sim \ln(n)$

Indication : voilà les premiers termes de Stirling : $n! \approx e^{n \ln(n) - n} \approx \left(\frac{n}{\epsilon}\right)^n$.

II.2.5 Rappel

Soit $q \ge 0$. La série $\sum_{n \ge 0} q^n$ converge ssi q < 1.

II.3Comparaisons

II.3.1 Théorème

Soient u, v deux suites réelles positives.

$$SI \ \forall n \in \mathbb{N} u_n \leqslant v_n \ et \sum_{n \geq 0} v_n \ converge \ alors \sum_{n \geq 0} u_n \ converge \ et \sum_{n \geq 0}^{\infty} u_n \leqslant \sum_{n \geq 0}^{\infty} v_n.$$

 $SI \ \forall n \in \mathbb{N} u_n \leqslant v_n \ et \sum_{n\geqslant 0} v_n \ converge \ alors \sum_{n\geqslant 0} u_n \ converge \ et \sum_0^\infty u_n \leqslant \sum_0^\infty v_n.$ Réciproquement, $si \sum_{n\geqslant 0} u_n \ diverge \ (tend \ vers +\infty, \ on \ est \ dans \ le \ cas \ des \ séries à termes \ positifs) \ alors \sum_{n\geqslant 0} v_n$ diverge.

Pour tout $N \in \mathbb{N}$ on a $\sum_{n=0}^{N} u_n \leqslant \sum_{n=0}^{N} v_n$ par somme d'inégalité. De plus, les sommes partielles de $\sum_{n \geqslant 0} v_n$ forment

une suite croissante et convergente donc $\sum_{n=0}^{N} v_n \leqslant \sum_{n=0}^{+\infty} v_n$. Ainsi La suite des sommes partielles de $\sum_{n\geq 0}^{\infty} u_n$ est bornée par un quantité indépendante de N donc converge.

Question Que ce passe-t-il si (u_n) n'est pas positive?

II.3.2 Corollaire

Soient u, v deux suites réelles positives.

SI $u_n \leqslant v_n$ APCR et $\sum_{n\geqslant 0} v_n$ converge alors $\sum_{n\geqslant 0} u_n$ converge.

Cette fois, on ne peut plus comparer les sommes.

Preuve.

Couper les sommes partielles après ce fameux rang.

II.3.3 Exemple

$$\sum_{n\geqslant 0} \frac{1}{n^2+1} \text{ converge}, \sum_{n\geqslant 1} \frac{1}{n2^n} \text{ converge}.$$

II.3.4 Définition

Soient $(u_n), (v_n)$ deux suites réelles ou complexes. On dit que (u_n) est dominée par (v_n) ssi il existe $M \in \mathbb{R}^+$ tel que $|u_n| \leq M|v_n|$ (à partir d'un certain rang éventuellement). On note $u_n = O_{+\infty}(v_n)$

Quand (v_n) ne s'annule pas, il revient au même d'imposer $(\left|\frac{u_n}{v_n}\right|)$ est bornée.

II.3.5 Exemple

Si on a
$$u_n = o_{+\infty}(v_n)$$
 alors $u_n = O_{+\infty}(v_n)$.
 $u_n = O_{+\infty(1)}$ ssi (u_n) est bornée.

II.3.6 Théorème

Soient
$$u, v$$
 deux suites réelles **positives**.
Si $u_n = O_{+\infty}(v_n)$ et si $\sum_{n\geqslant 0} v_n$ converge alors $\sum_{n\geqslant 0} u_n$ converge

Preuve.

On a $\frac{u_n}{v_n} \leqslant M$ pour tout n donc $u_n \leqslant Mv_n$ et la série de TG Mv_n converge par opérations sur les séries.

II.3.7 Corollaire

Soient
$$u, v$$
 deux suites réelles **positives**.
Si $u_n = o_{+\infty}(v_n)$ et si $\sum_{n\geqslant 0} v_n$ converge alors $\sum_{n\geqslant 0} u_n$ converge

Preuve.

Un petit o est aussi un grand O car toute suite convergente est bornée.

II.3.8 Exemple
$$\sum_{n\geqslant 0} \frac{1}{n!}, \sum_{n\geqslant 0} \frac{1}{n^n} \text{ convergent.}$$

II.3.9 Corollaire

Soient u, v deux suites réelles **positives**.

$$Si\ u_n \underset{+\infty}{\sim} (v_n)\ alors \sum_{n\geqslant 0} u_n\ converge\ ssi\ \sum_{n\geqslant 0} v_n\ converge.$$

Preuve.

Dans ce cas
$$u_n = O_{+\infty}(v_n)$$
 et $v_n = O_{+\infty}(u_n)$.

II.3.10 Exemple

Etudier la convergence de $\sum_{n\geq 1} \ln(\cos(\frac{1}{n}))$.

II.3.11 M-Méthode

Pour étudier la convergence ou la divergence de $\sum_{n\geqslant 0}u_n$ on pourra étudier la limite de $n^{\alpha}u_n$. Par exemple si $n^2u_n\to 0$ alors $u_n=o_{+\infty}(\frac{1}{n^2})$.

II.3.12 Attention

Si (u_n) et (v_n) ne sont pas de signes constant alors le théorème sur les équivalents ne s'applique pas. Par exemple $\frac{(-1)^n}{\sqrt{n}}$ est un TG de série convergente mais $\frac{(-1)^n}{\sqrt{n}-(-1)^n}$ ne l'est pas (faire un DL)

II.3.13 Exemple

Tenter de faire converger $\frac{n!e^n}{n^n}$ en utilisant une comparaison suite-série.

II.3.14 M-Rappel

Soit (u_n) une suite strictement positive.

1. Si
$$\frac{u_{n+1}}{u_n} \underset{+\infty}{\to} l < 1$$
 alors $u_n \to 0$ et pour $\alpha \in]l,1[,\ u_n = o(\alpha^n).$

2. Si
$$\frac{u_{n+1}}{u_n} \underset{+\infty}{\to} l > 1$$
 alors $u_n \to +\infty$ et pour $\alpha \in]1, l[, \alpha^n = o(u_n).$

II.3.15 Proposition

Soit (u_n) une suite STRICTEMENT POSITIVE. Si $\frac{u_{n+1}}{u_n} \xrightarrow[+\infty]{} l < 1$ alors $\sum_{n \geqslant 0} u_n$ converge.

$$Si \xrightarrow[u_n]{u_n} \xrightarrow[+\infty]{} l > 1 \ alors \sum_{n\geqslant 0} u_n \ diverge \ vers +\infty.$$

II.3.16 Remarque

Le cas l=1 est indéterminé : ex $u_n=\frac{1}{n}$ ou $u_n=\frac{1}{n^2}.$

II.3.17 Exemple

Soit $\alpha > 0$. Est-ce que $\sum_{n \ge 0} \frac{n^n \alpha^n}{n!}$ converge?

III Absolue convergence

III.1 Série complexes

III 1 1 Définition

Soit $\sum u_n$ une série complexe. On dit que cette série est absolument convergente ssi $\sum_{n\geqslant 0} |u_n|$ converge (prononcer module ou valeur absolue suivant les cas).

Explication On regarde en fait la convergence d'une série positive, pour laquelle tous les théorèmes précédent s'appliquent.

III.1.2 Théorème

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. Si $\sum u_n$ converge absolument alors $\sum u_n$ converge.

Preuve.

— Cas réel

On pose pour tout $n \in \mathbb{N}$, $u_n^+ = \max(u_n, 0)$ et $u_n^- = \max(-u_n, 0)$. C'est à dire que u_n^+ est u_n si $u_n \ge 0$ et 0 sinon. u_n^- est $|u_n|$ si $u_n \le 0$ et 0 sinon.

Ainsi ces deux nombres sont positifs et on a $u_n = u_n^+ - u_n^-, |u_n| = u_n^+ + u_n^-.$

On pose pour $N \in N$, $S_n = \sum_{n=0}^{N} u_n$ et $S'_n = \sum_{n=0}^{N} |u_n|$.

On sait que $S'_N \underset{+\infty}{\to} l \in \mathbb{R}^+$. Or $S'_N = \sum_0^N u_n^+ + \sum_0^N u_n^-$. Ces deux dernières sommes sont à termes positifs et majorées par l donc les séries $\sum u_n^+$ et $\sum u_n^-$ convergent.

Ainsi $\sum u_n$ converge par différence de série convergente.

Cas complexe.

Cette fois on pose $u_n = x_n + iy_n$ et on sait que $\sum |x_n + iy_n|$ converge.

Soit $n \in \mathbb{N}$. On a $|x_n| \leq |u_n|$ et $|y_n| \leq |u_n|$ donc les séries $\sum x_n$ et $\sum y_n$ convergent absolument donc convergent par le point précédent.

Ainsi la combinaison linéaire $\sum x_n + iy_n$ converge.

III.1.3 Méthode obligatoire

Pour étudier une série complexe ou une série dont le signe n'est pas constant, on étudiera toujours d'abord la convergence absolue.

III.1.4 Exemple Montrer que
$$\sum_{n\geqslant 0} \frac{(-1)^n}{n!}$$
 converge.

III.1.5 Série exponentielle

Soit
$$z \in \mathbb{C}$$
. Montrer que $\sum_{n \geqslant 0} \frac{z^n}{n!}$ converge.

III.2 Exemples et contres-exemples

III.2.1 Exemple

Une série dont la convergence dépendant d'un paramètre.

Pour quelles valeurs de $x \in \mathbb{R}$ la série $\sum_{n \geqslant 1} \frac{(-1)^{n-1} x^n}{n}$ converge?

III.2.2 Exemple Montrer que $\sum_{n\geqslant 1} \frac{(-1)^n}{n}$ n'est pas absolument convergente.

Que dire de sa convergence tout court? M-indice : étudier (S_{2n}) et (S_{2n+1}) , comme on l'a fait en TD.

III.2.3 Exemple

Soit (a_n) une suite à valeurs dans [0,9]. Montrer que $\sum_{n>0} \frac{a_n}{10^n}$ converge. Interprétation?