Devoir surveillé n°5

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Exercise 1 Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note $\varphi_A : \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM \end{array} \right.$.

Partie I

Dans cette partie on pose $A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

- 1. La matrice A est-elle diagonalisable?
- 2. La matrice B est-elle diagonalisable? Si oui, préciser une base de vecteurs propres.
- 3. On pose

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- (a) Vérifier que la famille $\mathcal{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ est une base de $\mathcal{M}_2(\mathbb{R})$.
- (b) Calculer $\varphi_A(E_{ij})$ pour tout $1 \leq i, j \leq 2$.
- (c) Donner la matrice de φ_A dans \mathcal{B} .
- (d) L'endomorphisme φ_A est-il diagonalisable? Si oui, préciser ses valeurs propres et une base de vecteurs propres de φ_A (on rappelle qu'ici, un vecteur propre sera une matrice de $\mathcal{M}_2(\mathbb{R})$).

Partie II

On fixe maintenant $A \in \mathcal{M}_n(\mathbb{R})$ pour un n > 0.

- 1. Soit $\lambda \in \mathbb{R}$ tel qu'il existe une matrice $M \in \mathcal{M}_n(\mathbb{R})$ non nulle vérifiant $\varphi_A(M) = \lambda M$. Montrer que la matrice $A \lambda I_n$ n'est pas inversible.
- 2. Montrer que si $\lambda \in \mathbb{R}$ est une valeur propre de φ_A , c'est également une valeur propre de A.
- 3. Soit μ une valeur propre de A, X un vecteur colonne non nul tel que $AX = \mu X$. Soit M une matrice dont une colonne est égale à X et toutes les autres colonnes sont nulles. Montrer que M est un vecteur propre de φ_A .
- 4. Donner l'ensemble des valeurs propres de φ_A .
- 5. Montrer que si A est diagonalisable, φ_A l'est également (on pourra, à partir d'une base de vecteurs propres de A, construire une base de vecteurs propres de φ_A).

Exercice 2

On note $E = \mathcal{C}([-\pi, \pi], \mathbb{R})$ l'ensemble des fonctions continues sur $[-\pi, \pi]$.

Pour
$$f \in E$$
, on note $\varphi_f : x \mapsto \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)e^{ixt} dt$

Partie I: préliminaires trigonométriques

On pose $a, b \in \mathbb{R}$. On note $u_a = \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}$, $u_b = \begin{pmatrix} \cos b \\ \sin b \end{pmatrix}$ et $n_b = \begin{pmatrix} -\sin b \\ \cos b \end{pmatrix}$.

- 1. Justifier que $\mathcal{B} = (u_b, n_b)$ est une base orthonormée directe de \mathbb{R}^2 .
- 2. On note (α, β) les coordonnées de u_a dans \mathcal{B} . Calculer α et β .
- 3. En déduire la valeur de $\cos(a-b)$ et $\sin(a-b)$, $\cos(a+b)$ et $\sin(a+b)$.
- 4. Retrouver les formules de linéarisation pour $\cos(a)\cos(b), \sin(a)\sin(b), \sin(a)\cos(b)$.

DS n°5 PT 2017-2018

Partie II

- 1. Montrer que pour $f \in E$, φ_f est bien définie sur \mathbb{R} .
- 2. On fixe pour cette question $a \in [-\pi, \pi]$.
 - (a) Soit $g: [-\pi, \pi] \to \mathbb{R}$. Donner la définition de : "g est continue en a".
 - (b) Soit $f \in E$. Montrer que |f| est continue en a.
 - (c) Montrer que $f \in E \Rightarrow |f| \in E$.
- 3. Montrer que φ_f est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer $(\varphi_f)'$.
- 4. Dans cette question on pose $f: t \mapsto t$.
 - (a) Pour $x \neq 0$, montrer que $\varphi_f(x) = \frac{-2i}{x}\cos(\pi x) + \frac{2i}{\pi x^2}\sin(\pi x)$.
 - (b) D'après la question 3, φ_f est continue sur \mathbb{R} . Montrer que l'expression précédente est bien prolongeable par continuité en 0.

Partie III

Pour $f, g \in E$, on pose $\psi(f, g) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$

- 1. Vérifier que ψ est un produit scalaire sur E. On note dorénavant $(f|g) = \psi(f,g) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$ pour $f,g \in E$.
- 2. Pour tout entier k>0, on pose $c_k:t\mapsto\cos(kt)$ et $s_k:t\mapsto\sin(kt)$. On pose de plus $c_0:t\mapsto\frac{1}{\sqrt{2}}$. Calculer $||c_0||^2$, $||c_k||^2$ et $||s_k||^2$ (en considérant que ces fonctions sont des éléments de E).
- 3. Pour $m, n \in \mathbb{N}$ avec m non nul, calculer $(c_n|s_m)$.
- 4. Soient $m, n \in \mathbb{N}$. On suppose $n \neq m$. Montrer que $c_n \perp c_m$ et $s_n \perp s_m$ (pour $m, n \neq 0$).
- 5. Qu'en déduire pour la famille $\{c_0\} \cup (c_n, s_n)_{n \in \mathbb{N}^*}$? Pour $N \in \mathbb{N}$, on note F_N le sous espace de E défini par $F_N = \text{Vect}(c_0, c_1, \dots, c_N, s_1, \dots, s_N).$
- 6. Dans cette question on fixe $f \in F_N$ pour un $N \in \mathbb{N} \setminus \{0\}$
 - (a) On note $f: t \mapsto a_0 + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt))$ pour des réels $a_0, a_1, \dots, a_N, b_1, \dots, b_N$. Exprimer f en fonctions des c_n et s_n , puis exprimer $a_0, \dots, a_N, b_1, \dots, b_N$ sous forme de produits scalaires.
 - (b) Montrer que $||f||^2 = 2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2)$
- 7. On ne fait plus d'hypothèse sur la fonction $f \in E$.

On note $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$ et pour $n \in \mathbb{N} \setminus \{0\}$, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$ et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$.

- (a) Exprimer a_n, b_n sous forme de produits scalaires. Justifier rapidement que si l'on connaît la fonction φ_f de la partie II, alors on connaît a_n et b_n pour tout n > 0. Qu'en est-il de a_0 ?
- (b) Que dire de a_n et b_n si f est paire ou impaire?
- (c) Pour $N \in \mathbb{N} \setminus \{0\}$, on note $S_N : t \mapsto a_0 + \sum_{n=1}^N (a_n \cos(nt) + b_n \sin(nt))$. Montrer que $(S_N f|S_N) = 0$.
- (d) Quelle est l'interprétation géométrique de S_N par rapport à f?
- (e) Montrer que $||f||^2 = ||f S_N||^2 + ||S_N||^2$.
- (f) Montrer que la série $\sum_{n\geq 1} (a_n^2 + b_n^2)$ converge et que

$$2a_0^2 + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) \leqslant \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)^2 dt$$
 (1)

Qu'en déduire pour $\sum_{n\geq 1} a_n^2$ et $\sum_{n\geq 1} b_n^2$?

(g) Montrer le théorème de Riemann-Lebesgue :

Si $f: [-\pi, \pi] \to \mathbb{R}$ est continue alors $\int_{-\pi}^{\pi} f(t) \cos(nt) dt \underset{n \to +\infty}{\to} 0$.

8. Dans la suite, on admet que l'inégalité (1) (de Bessel) est en réalité une égalité pour toute fonction $f \in E$. On pose $f: \left\{ \begin{array}{ccc} [-\pi,\pi] & \to & \mathbb{R} \\ t & \mapsto & \pi^2-t^2 \end{array} \right.$

PT 2017-2018 **DS n°5**

- (a) Calculer $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$.
- (b) Calculer les coefficients a_n et b_n tels que définis à la question 7.
- (c) Montrer directement puis en utilisant la question 7 que $\sum_{n\geqslant 1}\frac{1}{n^4}$ converge.

Calculer ensuite sa somme.

Exercice 3

On considère les fonctions f et g respectivement définies par

$$f(x) = \int_{0}^{+\infty} \frac{e^{-xt}\sin(t)}{t} dt \text{ et } g(x) = \int_{0}^{+\infty} \frac{e^{-xt}\cos(t)}{x} dt$$

- 1. Montrer que pour tout réel t > 0 : $\frac{|\sin(t)|}{t} \leqslant 1$.
- 2. Montrer que f et g sont bien définies sur \mathbb{R}_+^* .
- 3. Soit $a \in]0, +\infty[$. Etudier la continuité et la dérivabilité de f et g sur $[a, +\infty[$.
- 4. Pour tout réel x > 0, comparer f'(x) et g(x).

 (On pensera à remarquer que $g(x) = \lim_{X \to +\infty} \int_0^X \frac{e^{-xt} \cos(t)}{x} dt$ afin de pouvoir intégrer par parties.)
- 5. Montrer que pour tout réel strictement positif x:

$$f'(x) = -\frac{1}{1+x^2}$$

- 6. Montrer que f a une limite nulle lorsque x tend vers $+\infty$.
- 7. Déduire des questions précédentes l'expression de f(x) pour tout x > 0.
- 8. On admet que

$$\lim_{x \to 0} \int_0^{+\infty} \frac{e^{-xt} \sin(t)}{t} dt = \int_0^{+\infty} \lim_{x \to 0} \frac{e^{-xt} \sin(t)}{t} dt$$

Que vaut $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$?