Matrices

Exercice 1

On note $(E_{i,j})_{(i,j)\in[1,n]^2}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$. Calculer $E_{i,j}E_{k,l}$ pour $i,j,k,l\in[1,n]$

Calculer $AE_{i,j}$ et $E_{i,j}A$ pour $A \in \mathcal{M}_n(\mathbb{K})$.

Exercice 2 On considère la matrice $A = \begin{pmatrix} 3 & -1 & 5 \\ 9 & -3 & 15 \\ -3 & 1 & -5 \end{pmatrix}$

- 1. Calculer rg(A).
- 2. Montrer qu'il existe deux colonnes $U, V \in \mathbb{R}^3$ telles que $A = {}^t\!UV$.
- 3. En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 3
Montrer l'inversibilité et calculer l'inverse de $\begin{pmatrix} 1 & \dots & 1 \\ & \ddots & \vdots \\ (0) & & 1 \end{pmatrix}_{[n]}$

Exercice 4

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\forall M \in \mathcal{M}_n(\mathbb{K})$ AM = MA.

- 1. Déterminer toutes les matrices semblable à A.
- 2. En utilisant l'exercice 1, montrer qu'il existe $\lambda \in \mathbb{K}$ telle que $A = \lambda I_n$ (A est la matrice de l'homothétie de rapport λ dans toute base de \mathbb{K}^n).

Exercice 5 (\star)

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$$
. On suppose que $\forall i \in [\![1,n]\!] | a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^n |a_{i,j}|$. Montrer que A est

inversible.

On pourra raisonner par l'absurde et considérer la coordonnées de plus grand module d'un vecteur non nul du noyau de A.

Matrice d'une application

Exercice 6

Soit $f \in \mathcal{L}(\mathbb{R}^2)$ dont la matrice dans la base canonique est $M = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix}$. Montrer que $\mathcal{B} = (u, v) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est une base de \mathbb{R}^2 et calculer $\mathrm{Mat}_{\mathcal{B}}(f)$.

Calculer rapidement
$$\ker(f)$$
 et $\operatorname{Im}(f)$.

Exercice 7 Montrer que les matrices $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ ne sont pas semblables.

Exercice 8

Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ dont les coefficients sont donnés par $a_{i,j} = \binom{j-1}{i-1}$ et $\varphi \in \mathcal{L}(\mathbb{R}_n)$ l'application canoniquement associée à A.

- 1. Pour $P \in \mathbb{R}_n[X]$, exprimer $\varphi(P)$.
- 2. En déduire les coefficients de A^k pour $k \in \mathbb{N}$.
- 3. Même question avec k = -1 (que faut-il prouver avant?) puis $k \in \mathbb{Z}$.

Trace

Exercice 9 (3 4) Soit $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ et $\varphi : \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{K}) & \to & \mathcal{M}_2(\mathbb{K}) \\ M & \mapsto & AM \end{array} \right.$.

- 1. Montrer que $\varphi \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ et calculer sa trace.
- 2. Calculer A^2 et en déduire φ^2 . φ est-elle bijective?
- 3. Bonus 5/2: étudier $s = \frac{1}{5}\varphi$.

Exercice 10

On considère deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB - BA = A. Calculer $\operatorname{tr}(A^p)$ pour tout $p \in \mathbb{N}$.

Exercice 11

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Montrer que $(\forall M \in \mathcal{M}_n(\mathbb{K}) \operatorname{tr}(AM) = \operatorname{tr}(BM)) \iff A = B$.

Exercice 12 (\star)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ fixée. Trouver toutes les matrices $M \in \mathcal{M}_n(\mathbb{K})$ telles que $M + {}^tM =$ $\operatorname{tr}(M)A$.

Determinant

Exercice 13

Calculer (et factoriser)
$$\begin{vmatrix} 144 & 121 & 100 \\ 36 & 33 & 30 \\ 96 & 99 & 90 \end{vmatrix}, \begin{vmatrix} m & 1 & 2 \\ -1 & m+1 & 3 \\ 2m & 2 & 1-m \end{vmatrix}, \begin{vmatrix} 1 & 1 & 1 \\ \sin a & \sin b & \sin c \\ \cos a & \cos b & \cos c \end{vmatrix}$$

Exercice 14

Exercice 14
Soient
$$A, B, C$$
 trois points du plan de coordonnées $\begin{pmatrix} x_A \\ y_A \end{pmatrix}, \begin{pmatrix} x_B \\ y_B \end{pmatrix}, \begin{pmatrix} x_C \\ y_C \end{pmatrix}$ dans un repère $\begin{pmatrix} x_A \\ y_A \end{pmatrix}, \begin{pmatrix} x_B \\ y_C \end{pmatrix}$ dans un repère $\begin{pmatrix} x_A \\ y_C$

Etendre ce résultat à \mathbb{R}^3 .

Exercice 15

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Déterminer les valeurs de $\lambda \in \mathbb{R}$ telles que $\lambda I_3 - A$ ne soit pas inversible.

Exercice 16

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice anti-symétrique. Montrer que si A est inversible alors n est pair.

Plus technique

rence puis calculer d_n en fonction de n.

rence puis calculer
$$d_n$$
 en fonction de n .

Exercice 19
Soient $a, b \in \mathbb{C}$. Calculer $\begin{vmatrix} a & (b) \\ & \ddots \\ & a \end{vmatrix}_{[n]}$

- 2. On note $C_0, \ldots C_{n-1}$ les colonnes de $V_n(a_1, \ldots, a_n)$. En effectuant les opérations $C_{j+1} \leftarrow C_{j+1} - a_1 C_j$ de la droite vers la gauche, trouver une relation de récurrence liant V_n à V_{n-1} .
- 3. Exprimer $V_n(a_1, \ldots, a_n)$. Ce déterminant peut-il être nul?

4. On pose
$$\varphi$$
:
$$\begin{cases} \mathbb{K}_{n-1}[X] \to \mathbb{K}^n \\ P \mapsto \begin{pmatrix} P(a_1) \\ \vdots \\ P(a_n) \end{pmatrix} \text{. Calculer } \det(\varphi) \text{ et en déduire que } \varphi \text{ est } \end{cases}$$

Exercice 17
Soit E un K-espace vectoriel de dimension
$$n$$
 et $f \in \mathcal{L}(E)$ telle que $f^2 = -Id_E$. Montrer
Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ et $a, b \in \mathbb{R}, a \neq b$. Pour $x \in \mathbb{R}$ on pose $\Delta_n(x) = \begin{vmatrix} \lambda_1 + x & (a+x) \\ & \ddots & \\ (b+x) & & \lambda_n + x \end{vmatrix}_{[n]}$

- 1. Montrer que $\Delta_n(x)$ est une expression affine de x.
- 2. Calculer $\Delta_n(x)$ et en déduire $\Delta_n(0)$.