Exercice 2

Donner des primitives, en précisant l'intervalle, de :

1.
$$x \mapsto xe^{-2x^2}$$

4.
$$x \mapsto \exp(e^x + x)$$

7.
$$x \mapsto \tan^2(x)$$

$$2. \ x \mapsto \frac{x^2}{1+x^3}$$

5.
$$x \mapsto \frac{1}{\cos^2(x)\sqrt{\tan(x)}}$$
 8. $x \mapsto \frac{1}{x\sqrt{2+\ln(3x)}}$

8.
$$x \mapsto \frac{1}{x\sqrt{2+\ln(3x)}}$$

3.
$$x \mapsto \frac{\ln(\ln(x))}{x}$$

6.
$$x \mapsto \frac{1}{x \ln^2(x)}$$

9.
$$x \mapsto \frac{x}{\sqrt{1-x^4}}$$

Correction

1. Il v a deux manière d'approcher ce calcul. Soit on reconnaît une forme $u'e^u$ (ou presque) avec $u: x \mapsto -2x^2$ et dans ce cas une primitive sur \mathbb{R} est $x \mapsto -\frac{1}{2}e^{-2x^2}$.

Soit on utilise le calcul intégral. Par changement de variable $u = -2x^2$ et donc du = -2x dx, $\int xe^{-2x^2} dx = \int e^u \times \frac{-1}{2} du = -\frac{e^u}{2} = -\frac{e^{-2x^2}}{2}$, toujours valable sur \mathbb{R} .

- 2. Cette fois, on reconnaît plutôt $\frac{u'}{u}$ et une primitive sur $]-1,+\infty[$ est $x\mapsto \frac{1}{3}\ln(1+x^3)$. Si on choisit $]-\infty,-1[$ comme intervalle on prendra par exemple $x \mapsto \frac{1}{2}\ln(-1-x^3)$ comme primitive.
- 3. On travaille pour x > 1. On effectue le changement de variable $t = \ln(x)$ et donc $dt = \frac{1}{x}dx$. Ainsi $\int \ln(\ln x) \frac{1}{x}dx = \int \ln(t)dt = t \ln(t) - t = \ln(x) \ln(\ln(x)) - t$ $\ln(x)$ sur $]1, +\infty[$.
- 4. Pour $x \in \mathbb{R}$, $\exp(e^x + x) = e^x \exp(e^x)$ (de la forme $u'e^u$) et une primitive sur \mathbb{R} est $\exp \circ \exp$.
- 5. Rappelons que $\tan' = \frac{1}{\cos^2}$. Ainsi on reconnaît une forme $u'u^{-\frac{1}{2}}$. On se place sur un intervalle où tan > 0, par exemple sur $]0, \frac{\pi}{2}[$.

Alors une primitive est $2 \tan^{\frac{1}{2}}$.

- 6. Cette fois, la forme est $\frac{u'}{u^2}$ et donc une primitive sur]0,1[ou $]1,+\infty[$ est $-\frac{1}{\ln}$.
- 7. On a également (cf 5) $\tan' = 1 + \tan^2$. Ainsi une primitive sur $\left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ est $x \mapsto \tan(x) - x$.
- 8. Remarquons que $x \mapsto 2 + \ln(3x)$ est dérivable et strictement positive sur $\left[\frac{e^{-2}}{3},+\infty\right]$ et de dérivée $x\mapsto\frac{1}{x}$. Ainsi, une primitive de la fonction proposée sur ce même intervalle est $\ln(2 + \ln(3x))$.
- 9. On peut éventuellement faire un changement de variable $u=x^2$ ou alors directement reconnaître la dérivée (sur]-1,1[) de $x\mapsto \frac{1}{2}\arcsin(x^2)$

Convergence

Exercice 7

Etudier la convergence et calculer le cas échéant :

$$1. \int_{0}^{1} \frac{\mathrm{d}t}{1-t^2}.$$

3.
$$\int_{0}^{+\infty} \frac{1}{(t+1)(t+2)} dt$$

2.
$$\int_{0}^{1} \frac{dt}{\sqrt{1-t^2}}$$
.

4.
$$\int_{0}^{+\infty} \frac{1}{e^{t}-1} dt.$$

Correction 1. LA function $f: t \mapsto \frac{1}{1-t^2} = \frac{1}{(1+t)(1-t)}$ est continue sur l'intervalle [0, 1] en tant qu'inverse d'une fonction qui ne s'annule pas.

Par changement de variable bijectif u = 1 - t (et t = 1 - u) et de classe \mathcal{C}^1 , $\int_0^1 f$ à la même nature que $\int_0^1 \frac{1}{(2-u)u} du$ qui est cette fois impropre en 0

Or $\frac{1}{(2-u)u} \sim \frac{1}{0}$ et $\int_0^{\frac{1}{u}du}$ diverge. Ainsi par comparaison de fonctions positives, $\int_0^1 \frac{1}{1-t^2} dt$ diverge.

2. La fonction $t\mapsto \frac{1}{\sqrt{1-t^2}}$ est continue sur [0,1[par composition et inverse d'une fonction ne s'annulant pas. Pour $x \in [0,1[$ on a $\int_0^x \frac{1}{\sqrt{1-t^2}} dx = \arcsin(x) \xrightarrow{x} \frac{1}{\sqrt{1-t^2}} dx$ $\frac{\pi}{2}$. Ainsi l'intégrale proposée converge vers $\frac{\pi}{2}$.

On peut refaire le même raisonnement de comparaison qu'à la première question pour prouver la convergence.

3. $f: t \mapsto \frac{1}{(t+1)(t+2)}$ est continue sur $[0, +\infty[$ par inverse d'une fonction continue

De plus, $f(t) \sim \frac{1}{t^2}$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ converge donc $\int_0^{+\infty} f(t) dt$ converge par comparaison de fonctions positives.

De plus, pour x > 0, on a $\int_0^x f(t) dt = \int_0^x \left(\frac{1}{t+1} - \frac{1}{t+2} \right) dt = \ln(x+1) - \ln(1) - \ln(1)$ $\ln(x+2) + \ln(2) \xrightarrow[x \to +\infty]{} \ln(2)$ (utiliser la propriété fonctionnelle de ln et le quotient tend vers 1 par équivalents).

4. $f: t \mapsto \frac{1}{e^t-1}$ est continue sur $]0,+\infty[$ par quotient de fonctions continues dont le dénominateur ne s'annule pas.

Mais $f(t) \sim \frac{1}{t}$ et donc l'intégrale considérée diverge par comparaison de fonctions positives. Par contre, on peut prouver la convergence en $+\infty$ par équivalent (on retrouve une intégrale de référence).

Plus technique

Exercice 8

Calculer, après avoir prouvé leurs convergences :

$$1. \int_{0}^{+\infty} e^{-\sqrt{t}} dt$$

3.
$$\int_{0}^{1} \frac{\ln(1-x^2)}{x^2} dx$$

$$2. \int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} dt$$

4.
$$\int_{0}^{1} \frac{\ln(t)}{(1+t)^2} dt$$

Correction 1. $f: t \mapsto e^{-\sqrt{t}}$ est continue sur $[0, +\infty[$ par composition de fonctions continues.

De plus, $t^2f(t) \to 0$ car $u^4e^{-u} \to 0$ par croissances comparées. Ainsi $f(t)=o_{+\infty}(\frac{1}{t^2})$

Comme $\int_1^{+\infty} \frac{1}{t^2} \mathrm{d}t$ converge, par comparaison de fonctions positives, l'intégrale proposée converge. On pose $u = \sqrt{t}$ ie $t = u^2$ qui donne bien un changement de variable bijectif et \mathcal{C}^1 de \mathbb{R}^+_* dans lui même (attention $\sqrt{.}$ n'est pas dérivable en 0). De plus, $\mathrm{d}t = 2u\mathrm{d}u$ et ainsi $\int_0^{+\infty} e^{-\sqrt{t}} \mathrm{d}t = \int_0^{+\infty} 2ue^{-u} \mathrm{d}u$. il faut effectuer une intégration par parties sur [0,x] comme dans le cours pour obtenir $\int_0^{+\infty} e^{-\sqrt{t}} \mathrm{d}t = 2$ (voir $\Gamma(\beta)$ dans le cours, il s'agit du cas $\beta = 2$).

2. La fonction $f: t \mapsto \frac{\ln(t)}{\sqrt{t}dt}$ est continue sur]0,1] par quotient de fonctions continues dont le dénominateur ne s'annule pas.

De plus, $t^{\frac{1}{3}}f(t) \underset{0}{\to} 0$ et donc $f(t) = o_0(\frac{1}{t^{\frac{1}{3}}})$ et on conclut par comparaison à la convergence.

Soit $x \in]0,1]$. $\int_x^1 f(t) dt = \int_x^1 \frac{\ln(\sqrt{t^2})}{\sqrt{t}} dt$ et on effectue le changement de variable $u = \sqrt{t}$ et donc dt = 2udu.

Alors $\int_x^1 f(t) dt = \int_{\sqrt{x}}^1 4 \ln(u) du \underset{x \to 0}{\to} 4$ (voir le cours).

3. Cette fois on a un prolongement par continuité en 0 (par la valeur -1 car $\ln(1-x^2) \sim -x^2$). On traite la convergence en 1 par changement de variable et en se ramenant à $\ln(u)$ en 0.

Soient $A, B \in]0,1[$ avec A < B. On obtient par intégration par parties (d'un produit de deux fonctions \mathcal{C}^1 sur [A,1]) : $\int_A^B \frac{1}{x^2} \ln(1-x^2) \mathrm{d}x = [-\frac{1}{x} \ln(1-x^2)]_A^B - \int_A^B \frac{-1}{x} \frac{-2x}{(1-x^2)} \mathrm{d}x = \cdots - \arcsin(B) + \arcsin(A)$. Quand $B \to 1$ puis $A \to 0$, on obtient $-\frac{\pi}{2}$.

4. On se ramène à $\int_0^1 \ln(t) dt$ par équivalent, et c'est une intégrale convergente. Pour le calcul, effectuer une IPP sur [A, 1] en dérivant ln, puis on traite le produit par décomposition en éléments simples.

Exercice 10

1. Montrer que $\int_{1}^{+\infty} \frac{e^{-t}}{t} dt$ converge mais pas $\int_{0}^{+\infty} \frac{e^{-t}}{t} dt$.

On pose maintenant $f: \left\{ \begin{array}{ccc}]0, +\infty[& \to & \mathbb{R} \\ x & \mapsto & \int_{x}^{+\infty} \frac{e^{-t}}{t} \mathrm{d}t \end{array} \right.$

Correction Ne pas oublier de parler de la continuité sur $]0, +\infty[$.

On a $\frac{e^{-t}}{t} \sim \frac{1}{t}$ ce qui prouve la divergence de $\int_0^1 \frac{e^{-t}}{t}$ (on compare des fonctions positives).

Sur $[1, +\infty[$, on remarque que $\frac{e^{-t}}{t} = o_{+\infty}(e^{-t})$ qui est bien intégrable. On conclut par comparaison.

2. Donner un équivalent de f en 0. Indication : au choix une intégration par parties ou une série entière (après avoir ramené l'étude à un intervalle de longueur fini).

Correction Pour x > 0, on a $f(x) = \int_{x}^{1} \frac{e^{-t}}{t} dt + \int_{1}^{+\infty} \frac{e^{-t}}{t} dt$. La première intégrale tend vers $+\infty$ d'après la question précédente quand $x \to 0$. On a déjà $f(x) \sim \int_{x}^{1} \frac{e^{-t}}{t} dt$.

Pour $t \in \mathbb{R}_+^*$, $\frac{e^{-t}}{t} = \frac{1}{t} + \underbrace{\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+1)!} t^n}_{S(t)}$ où S est la somme d'une série entière

qui converge sur \mathbb{R} et est donc continue sur \mathbb{R} .

Alors $\int_{x}^{1} \frac{e^{-t}}{t} dt = -\ln(x) + \int_{x}^{1} S(t) dt$. Comme S est continue sur [0, 1], on a $\int_{x}^{1} S(t) dt \xrightarrow[x \to 0]{} \int_{0}^{1} S(t) dt$ qui est une constante et est donc négligeable devant $-\ln(x)$ en 0. Finalement $f(x) \approx -\ln(x)$.

3. Après avoir montré que $\int_x^{+\infty} \frac{e^{-t}}{t^2} dt = o_{+\infty} \left(\int_x^{+\infty} \frac{e^{-t}}{t} dt \right)$, donner un équivalent de f en $+\infty$ en effectuant une intégration par parties.

Correction Les intégrales considérées convergent. La seconde d'après la question 1 et la première car l'intégrande est positif et négligeable devant $\frac{e^{-t}}{t}$ en $+\infty$.

$$+\infty.$$
On a $\int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt = \int_{x}^{+\infty} \frac{1}{t} \frac{e^{-t}}{t} dt \leqslant \frac{1}{x} \int_{x}^{+\infty} \frac{e^{-t}}{t} dt \text{ car } \forall t \in [x, +\infty[\frac{1}{t} \leqslant \frac{1}{x} \text{ et on obtient bien } \int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt = o_{+\infty} \left(\int_{x}^{+\infty} \frac{e^{-t}}{t} dt \right)$

Avec des paramètres

Exercice 11

Donner une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour que $\int\limits_0^{+\infty} \frac{t-\sin(t)}{t^{\alpha}} dt$ converge.

Correction $f:t\mapsto \frac{t-\sin(t)}{t^{\alpha}}$ est continue sur $]0,+\infty[$ par quotient de fonctions continues dont le dénominateur ne s'annule pas.

- Etude en $+\infty$. sin et bornée et $t \to +\infty$ donc $\sin(t) = o_{+\infty}(t)$ et $f(t) \sim \frac{t}{t^{\alpha}} = \frac{1}{t^{\alpha-1}}$.
 - Ainsi $\int_1^{+\infty} f(t) dt$ converge (par comparaison de fonctions positives) ssi $\alpha > 2$.
- Etude en 1.
 - On effectue un développement limités de sin en 0 et on trouve que $f(t) \sim \frac{t^3}{3t^\alpha} = \frac{1}{3}\frac{1}{t^{\alpha-3}}$. Ainsi (pour la même raison), $\int_0^1 f$ converge ssi $\alpha-3<1$ ie $\alpha<4$.

Finalement, $\int_0^{+\infty} \frac{t-\sin(t)}{t^{\alpha}} dt$ converge ssi $\alpha \in]2, 4[$.