PT 19-20 1/1

Devoir maison n°5

A rendre le 24/01. Vous pouvez rendre une copie pour 2, à condition de chercher ensemble et que chacun rédige une partie du devoir.

Exercice 1

Dans \mathbb{R}^2 (le plan rapporté au repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$), on considère $\Omega = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

- 1. Soit N un point du cercle de centre Ω et de rayon 1. Déterminer, quand il existe, l'orthocentre du triangle $(O\Omega N)$. Rappel : il s'agit du point d'intersection des hauteurs.
 - On exprimera d'abord les coordonnées de N en fonction d'un angle $t \in [-\pi, \pi]$, en précisant pour quels valeurs de t l'orthocentre est bien défini.
- 2. On note Γ le lieu de ces orthocentres. Nous avons obtenu une première paramétrisation de Γ à la question précédente (c'est à dire une expression de Γ comme support d'une courbe paramétrée).
 - (a) Pour $t \in]-\pi, \pi[$, on pose $u = \tan \frac{t}{2}$. Montrer que $\cos(t) = \frac{1-u^2}{1+u^2}$ et $\sin(t) = \frac{2u}{1+u^2}$.
 - (b) Montrer que l'on peut paramétrer Γ par $x(u) = \frac{2}{u^2+1}$ et $y(u) = \frac{u^2-1}{u(u^2+1)}$.
 - Il s'agit de montrer que $M: \binom{x}{y}$, un point du plan, vérifie $M \in \Gamma \iff \exists u \in \dots \ x = x(u) \text{ et } y = y(u).$
- 3. Etudier la courbe Γ sous la forme précédente, puis tracer.