Géométrie du plan et de l'espaces : isométries

Exercice 1

On note r une rotation de \mathbb{R}^3 , d'axe D, distincte de l'identité et s une symétrie orthogonale par rapport à un plan P.

Montrer que si $P = D^{\perp}$ alors $s \circ r = r \circ s$.

Etudier la réciproque.

Exercice 2

Déterminer en fonction de $m \in \mathbb{R}$ la nature de la courbe plane d'équation $(1+m)(x^2+y^2)-2mxy=m$.

Exercice 3 On donne $M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ et on pose $\sigma = ab + bc + ac, \ s = a + b + c$.

- 1. Montrer que M est orthogonale ssi $\sigma = 0$ et $s \in \{-1, 1\}$.
- 2. Montrer que $M \in SO_3(\mathbb{R})$ ssi $\sigma = 0$ et s = 1.
- 3. (*) Montrer que $M \in SO_3(\mathbb{R})$ ssi il existe $k \in [0, \frac{4}{27}]$ tel que a, b, c sont les racines de $X^3 X^2 + k$

Exercice 4

Etude de la conique d'équation $4x^2 + 12xy - y^2 - 5x - 6y = 0$.

Exercice 5

Soient a, b deux réels non nuls. Dans le plan affine euclidien usuel, rapporté à un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$, on considère la droite D d'équation

$$D: \frac{x}{a} + \frac{y}{b} = 1$$

et un point M de coordonnées $(x_0, y_0) \in \mathbb{R}^2$.

- 1. Calculer les coordonnées (x_1, y_1) du symétrique M_1 de M par rapport à D.
- 2. Donner de même $M_2(x_2, y_2)$ et $M_3(x_3, y_3)$, respectivement symétriques de M par rapport à (Ox) et (Oy).
- 3. Déterminer le lieu des points M pour lesquels M_1, M_2, M_3 sont alignés et donner la nature de cet ensemble.

Exercice 6

Soit
$$A = \frac{1}{13} \begin{pmatrix} 12 & 3 & -4 \\ 3 & 4 & 12 \\ 4 & -12 & 3 \end{pmatrix}$$

- 1. Quelle transformation géométrique r de \mathbb{R}^3 A représente-t-elle?
- 2. Donner l'image par r du plan P d'équation x y + 4z = 1.

Courbes paramétrées

Exercice 7

Soit $\Gamma: y=ax^2$. Déterminer l'équation de la normale en un point M d'abscisse $t\neq 0$.

Déterminer l'ensemble γ des points ou se coupent deux normales à Γ qui soient perpendiculaires.

Déterminer l'enveloppe des normales à Γ .

Exercice 8

Caractériser et tracer la conique $(C): y^2 - x^2 = 1$.

Donner une paramétrisation (x(t), y(t)) de la courbe à l'aide des fonctions chet sh. Déterminer une équation de la famille des normales (H) à (C). Déterminer la développée (γ) de (C) et tracer après étude.

Exercice 9

- 1. Soit $b \neq 0$. Etude de la courbe paramétrée $(x = \cos(3t), y = b\sin^3(t))$ sur $[-\pi, \pi]$. On montrera que l'on peut réduire l'intervalle d'étude par des symétries à préciser.
- 2. On choisit b = 1. Déterminer les points doubles et un vecteur directeur de la tangente en ces points.
- 3. Donner un développement limité de x et y en 0. Que peut-on en déduire? Donner l'allure de la courbe au voisinage de l'origine.
- 4. Dans le cas général, comparer les courbes obtenues pour b et -b. Comment déduiton toutes les courbes du cas b = 1?

Exercice 10

Etude de la courbe paramétrée $(x = \cos 3t, y = \sin 3t)$.

Exercice 11

- 1. Représenter la courbe C paramétrée par $x(t) = 2t^2$, y(t) = 2t.
- 2. Déterminer une équation de la tangente T_t au point de paramètre t.
- 3. Trouver les conditions sur t et u pour que T_t et T_u soient perpendiculaires.
- 4. Déterminer le lieu des points d'intersection des tangentes perpendiculaires (appelé podaire de C).

Exercice 12

Le plan est rapporté à un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$. Soit un cercle C_t de rayon a tangent à (Ox) en un point T d'abscisse t. Soit M le point d'intersection du cercle C_t avec l'autre tangente à C_t issue de O.

- 1. Tracer la figure.
- 2. Déterminer les coordonnées de M.
- 3. Etudier la trajectoire.

Exercice 13

Dans le plan affine euclidien usuel, rapporté à un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$, on Dans l'espace munit d'un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ on considère considère la famille de droites $(\mathcal{D}_t)_{t\in\mathbb{R}}$ définie pour tout $t\in\mathbb{R}$ par

$$D_t: x\sin(t) - x\cos(t) + \sin^3(t) = 0$$

- 1. Déterminer l'enveloppe Γ de la famille de droites $(\mathcal{D}_t)_{t\in\mathbb{R}}$
- 2. Déterminer et étudier les points stationnaires de Γ .
- 3. Représenter Γ .

Exercice 14

On considère l'arc paramétré $\mathcal C$ défini par

$$\begin{cases} x(t) = \frac{t^2 + 9}{t^2 + 1} \\ y(t) = \frac{t(t^2 + 9)}{t^2 + 1} \end{cases}$$

- 1. Etudier les symétries éventuelles de \mathcal{C} .
- 2. Etudier les variations de x et y.
- 3. Déterminer les asymptotes de \mathcal{C} et les tangentes horizontales et verticales.
- 4. Tracer l'allure de \mathcal{C} .
- 5. Soit D une droite du plan. Montrer que $D \cap \mathcal{C}$ est fini et que $|D \cap \mathcal{C}| \leq 4$.

Exercice 15

Déterminer l'ensemble des centres de courbures au point O des courbes intégrales de l'équation différentielle :

$$(1 - x^2)y'' - xy' - 2y = 1$$

telles que y(0) = 0.

Surfaces

Exercice 16 $0n \text{ note } \mathcal{D}: \begin{cases} x=1\\ y=z \end{cases} \quad \text{. Déterminer une équation cartésienne de la surface de révolution}$ de \mathcal{D} autour de (Oz)

Donner également une représentation paramétrique.

Exercice 17

Montrer que $f(x,y) = x^4 + y^4 - 2(x-y)^2$ est non bornée.

Trouver les points critiques et préciser leurs natures si possible. Montrer que le point (0,0) est un point col, c'est à dire qu'il n'est ni minimum ni maximum local. Calculer $\inf_{(x,y)\in\mathbb{R}^2} f(x,y)$.

Exercice 18

$$C_1: \begin{cases} z = x^2 - 1 \\ y = 1 \end{cases}$$
 et $C_2: \begin{cases} z = x^2 + 1 \\ x + y = 0 \end{cases}$

. Déterminer une équation cartésienne du lieu S des milieux des segments $[M_1M_2]$ où M_1 et M_2 parcourent C_1 et C_2 respectivement.

Exercice 19 On considère la surface d'équation paramétrique S : $\begin{cases} x=u^2 \\ y=uv \\ z=2u+v \end{cases}$

- 1. Montrer que S est une surface réglée.
- 2. Donner le plan tangent \mathcal{P} au point de paramètre (1,1).
- 3. Donner une équation cartésienne de S.
- 4. Déterminer l'intersection $S \cap \mathcal{P}$.

Exercice 20 $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et S: x(y+z) = 1. Vérifier que S est un cylindre de direction $\text{Vect}(\vec{u})$

et donner une section de ce cylindre en précisant sa nature.

Exercice 21

Soit $\alpha \in \mathbb{R}$ et $S: x(\alpha - y) + y(\alpha - z) + z(\alpha - x) = 0$.

- 1. Donner deux points de S par leurs coordonnées.
- 2. Rappeler la définition d'un cône.
- 3. Montrer que si S est un cône alors $\alpha = 0$.
- 4. En s'inspirant du cours sur les coniques, effectuer un changement de repère orthonormé direct pour réduire l'équation de S dans le cas $\alpha = 0$.
- 5. Donner une paramétrisation de $\Sigma : x^2 + y^2 2z^2 = 0$ et en déduire que Σ est une surface réglée, puis que Σ est un cône.
- 6. Conclure sur S.