Exercice 1

Dans une urne contenant N boules numéroté de 1 à N, on tire, successivement et avec remise, p boules. On note X la variable aléatoire correspondant au maximum des p numéros tirés.

Décrire (Ω, \mathbb{P}) modélisant l'expérience. Calculer $\mathbb{P}(X \leq k)$ pour $1 \leq k \leq N$ et en déduire la loi de X.

Exercice 2

Une urne contient 4n jetons numérotés de 1 à 4n. Les jetons de 1 à n sont rouges, ceux de n+1 à 2n sont verts, et les autres sont blancs. On tire successivement et sans remise n jetons. On note A l'événement "au moins un des jetons tirés est vert", et, pour $k \in [\![1,n]\!]$, T_k l'événement "on tire pour la première fois un jeton vert au k-ième tirage".

- 1. Décrire un univers Ω adapté à l'expérience aléatoire, et donner son cardinal.
- 2. Calculer la probabilité de l'événement A.
- 3. (a) Calculer $P(T_1)$.
 - (b) Calculer $P(T_n)$.
 - (c) Montrer que pour tout $k \in [1, n]$, $P(T_k) = \frac{(4n-k)!(3n)!n}{(4n)!(3n-k+1)!}$

Exercice 3

Soit $c \in \mathbb{N}^*$.

Une urne contient à l'instant initial 1 boule blanche et 1 boule noire. On effectue une suite de tirage avec remise : si la boule tirée est blanche, on rajoute c boules blanches dans l'urne et de même pour les boules noires.

On note X_i la variable aléatoire qui prend la valeur 1 si on tire une boule blanche au ième tirage, et 0 sinon.

- 1. Donner la loi et l'espérance de X_1 .
- 2. Que représente $Z_p = \sum_{i=1}^p X_i$? Déterminer $\mathbb{P}(X_{p+1} = 1 | Z_p = k)$ pour des valeurs de k à préciser.
- 3. Montrer que $\mathbb{P}(X_{p+1} = 1) = \frac{1 + cE(Z_p)}{2 + pc}$.
- 4. Donner la loi de X_i pour $i \in \mathbb{N}^*$.

Exercice 4

La cible d'un jeu de fléchette est constituée d'une zone jaune et d'une zone verte; la probabilité d'atteindre la zone verte, quand la cible est atteinte, est de $\frac{1}{2}$ pour tous les joueurs.

Le joueur A atteint toujours la cible et on note X la variable aléatoire représentant le nombre de lancers nécessaires pour atteindre la zone verte.

Le jour B atteint la cible avec une probabilité $p \in [0,1]$.

- 1. Donner la loi de X, son espérance et sa variance.
- 2. Donner la probabilité que B atteigne la zone verte, pour un lancer.
- 3. Le gagnant est celui qui atteint la zone verte en premier. A commence : donner la probabilité qu'il gagne. Le jeu finit-il presque sûrement?

Exercice 5

On considère une urne contenant n-1 boules noires et une boule blanche.

- 1. On effectue une succession de tirages avec remise et on note T la variable aléatoire donnant le rang de premier tirage amenant une boule blanche. Donner les valeurs prises par T, sa loi, son espérance et sa variance.
- 2. On effectue maintenant des tirages sans remise. Soit X la variable aléatoire donnant le rang du tirage de la boule blanche. Donner les valeurs prises par X, sa loi, son espérance et sa variance.

On note Y la variable donnant le nombre de boule noire restantes dans l'urne après le tirage de la boule blanche. Exprimer Y en fonction de X et n. Donner l'espérance et la variance de Y.

Exercice 6

Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2 \ \mathbb{P}((X,Y) = (j,k)) = \frac{(j+k)\left(\frac{1}{2}\right)^{j+k}}{ej!k!}$$

- 1. Déterminer les lois marginales de X et Y. Les variables X et Y sont-elles indépendantes ?
- 2. Prouver que $E(2^{X+Y})$ existe et la calculer.

Exercice 7

- 1. Rappeler l'inégalité de Bienaymé-Tchebychev.
- 2. Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires mutuellement indépendante, de même loi et admettant un moment d'ordre 2. On pose $S_n = \sum_{k=1}^n Y_k$.

Prouver que $\forall a > 0 \mathbb{P}\left(\left|\frac{S_n}{n} - E(Y_1)\right| > a\right) \leqslant \frac{V(Y_1)}{na^2}$.

3. Application. On effectue n tirages successifs, avec remise, d'une boule dans une urne contenant 2 boules rouges et 3 boules noires.

A partir de quel nombre de tirage peut on garantir à plus de 95% que la proportion de boules rouges obtenues restera comprise entre 0, 35 et 0, 45?

Indication : considérer la suite (Y_n) de variables aléatoires de Bernoulli où Y_n mesure l'issue du nième tirage.

Exercice 8

Les deux questions sont indépendantes.

1. (a) Soit X_1, X_2 deux variables aléatoires indépendantes de loi de Poisson de paramètres respectifs λ_1 et λ_2 .

Déterminer la loi de $X_1 + X_2$.

- (b) En déduire l'espérance et la variance de $X_1 + X_2$.
- 2. Soit X et Y deux variables aléatoires. On suppose que Y suit une loi de Poisson de paramètre λ .

On suppose $X(\Omega) = \mathbb{N}$ et que, pour tout $m \in \mathbb{N}$, la loi conditionnelle de X sachant (Y = m) est une loi binomiale de paramètre m, p.

Déterminer la loi de X.

Exercices de synthèse, type concours

Exercice 9

Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi de Bernoulli de paramètre $p\in]0,1[$. Les X_i représentent la répétition d'une même expérience aléatoire : la ième expérience est un succès si et seulement si X_i prend la valeur 1.

Pour $n \in \mathbb{N} \setminus \{0\}$, on note $S_n = \sum_{i=1}^n X_i$. On pose également q = 1 - p

- 1. Rappeler le développement en série entière de $x\mapsto \frac{1}{1-x}$ ainsi que son domaine de convergence.
- 2. Montrer que pour $m \in \mathbb{N}$:

$$\forall x \in]-1,1[\frac{m!}{(1-x)^{m+1}} = \sum_{k=m}^{+\infty} \frac{k!}{(k-m)!} x^{k-m}$$

3. On fixe $n \in \mathbb{N} \setminus \{0\}$ pour le reste de l'exercice. Montrer que la série $\sum_{k \geq n} {k-1 \choose n-1} p^n q^{k-n}$ converge et que sa somme vaut 1.

On peut maintenant définir une variable aléatoire Y_n à valeurs dans $\{n, n+1, \ldots\} = \mathbb{N} \cap [n, +\infty[$ par sa loi :

$$\forall k \geqslant n \ \mathbb{P}(Y_n = k) = \binom{k-1}{n-1} p^n q^{k-n}.$$

4. Reconnaître la loi de Y_1 . Expliciter le coefficient binomial sous forme de quotient simple pour les lois de Y_2 et Y_3 .

- 5. Expliquer rapidement pourquoi $S_n \hookrightarrow \mathcal{B}(n,p)$. Pour $k \geqslant n$, calculer $\mathbb{P}(S_k = n \text{ et } S_{k-1} = n-1)$. Comment interpréter la loi de la variable Y_n ?
- 6. On pose Z_n la variable aléatoire dont la valeur est le nombre d'expérience nécessaire à l'obtention d'exactement n succès lors de notre répétition d'expérience (Z_n vaut le rang d'obtention du n-ème succès).
 - (a) Quel est l'ensemble des valeurs possibles pour Z_n ?
 - (b) Sans utiliser la question 5, et en effectuant un raisonnement par dénombrement, montrer que Z_n suit la même loi que Y_n .
- 7. On considère la série entière de variable t réelle $\sum_{k\geqslant n}\mathbb{P}(Y_n=k)t^k$ et on note f_n sa somme.

Calculer le rayon de convergence R de cette série entière, et montrer en particulier que R>1. Rappeler également le nom de cette série.

- 8. Calculer $f_n(t)$ pour $t \in]-R, R[$.
- 9. Montrer que Y_n est d'espérance finie et calculer $E(Y_n)$. On pourra penser à dériver f_n .
- 10. En dérivant f_n une seconde fois, montrer que Y_n est de variance finie et calculer $V(Y_n)$.

Exercice 10 (inspiré de Math A 2016)

- 1. On considère la fonction f définie sur]-1,1[par $: \forall x \in]-1,1[$ $f(x)=\frac{1}{1-x}.$
 - (a) Donner l'expression de la dérivée kième de f pour tout $k \ge 0$.
 - (b) En déduire le développement en série entière de la fonction $x\mapsto \frac{1}{(1-x)^{k+1}}$ pour k entier positif.
- 2. Nous allons retrouver ce résultat. Soit $k \in \mathbb{N}$. On définit $g: x \mapsto \frac{1}{(1-x)^{k+1}}$ pour $k \in \mathbb{N}$ fixé.
 - (a) Soit $\alpha \in \mathbb{R}$. Rappeler sans justification le développement en série entière de $(1+x)^{\alpha}$ en précisant le rayon de convergence.
 - (b) Montrer que $\forall x \in]-R, R[g(x) = \sum_{n=0}^{+\infty} {k+n \choose n} x^n = \sum_{n=0}^{+\infty} {k+n \choose k} x^n$ pour un $R \in]0, +\infty[$ à préciser.
- 3. Passons aux choses sérieuses. Soit $p \in]0,1[$. On considère deux variables aléatoires X,Y telles que :

$$\forall n \in \mathbb{N} \backslash \{0\} \ \mathbb{P}(X=n) = p(1-p)^{n-1}$$

$$\forall n \in \mathbb{N} \backslash \{0\} \forall k \in [0,n] \ \mathbb{P}(Y=k|X=n) = \binom{n}{k} p^k (1-p)^{n-k}$$

- (a) Reconnaître ces deux lois et donner une interprétation (ou un exemple de variable qui suit cette loi) pour chacune.
- (b) Soit $n \in \mathbb{N} \setminus \{0\}$ et $k \in \mathbb{N}$. On suppose k > n. Que vaut $\mathbb{P}(Y = k | X = n)$? Justifier.
- (c) Déterminer la loi du couple (X,Y), c'est à dire les probabilités (X=n,Y=k) pour tout $(n,k) \in \mathbb{N} \setminus \{0\} \times \mathbb{N}$.
- (d) Montrer que la loi de Y est donnée par

$$\mathbb{P}(Y=0) = \frac{1-p}{2-p} \text{ et } \forall k \geqslant 1 \ \mathbb{P}(Y=k) = \frac{(1-p)^{k-1}}{(2-p)^{k+1}}$$

- (e) On considère deux variables aléatoire U,V indépendantes et $\lambda \in]0,1[$. On suppose que U suit une loi de Bernoulli de paramètre λ et V suit une loi géométrique de paramètre λ .
 - On pose Z = UV. Calculer $\mathbb{P}(Z = 0)$ et pour $k \geqslant 1$, $\mathbb{P}(Z = k)$.
- (f) Trouver λ pour que Z ait la même loi que Y.

Exercice 11 (Math A 2019)

Soit X et Y des variables aléatoires à valeurs dans $\mathbb N$ telles que

$$\forall (k,\ell) \in \mathbb{N}^2 \ \mathbb{P}(X=k,Y=\ell) = \frac{\alpha}{2^{k+\ell}}$$

- 1. Déterminer la valeur de α
- 2. Les variables X et Y sont-elles indépendantes?
- 3. Justifier que, pour tout $x \in]-1,1[$, nous avons

$$\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}, \ \sum_{k=2}^{+\infty} k(k-1)x^{k-2} = \frac{2}{(1-x)^3}$$

- 4. Calculer $\mathbb{E}(X)$, Var(X), Cov(X,Y).
- 5. Calculer pour tout $n \in \mathbb{N}$, $\mathbb{P}(X \ge n)$.
- 6. On pose $Z = \min(X, Y)$. Déterminer la loi de Z.
- 7. Calculer les probabilités suivantes :

$$\mathbb{P}(X = Y), \ \mathbb{P}(X < Y), \mathbb{P}(X = rY)$$

où rest un nombre rationnel positif fixé.

- 8. On pose T = X Y. Déterminer la loi du couple (Z, T) en précisant dans un premier temps les valeurs possibles prises par ce couple.
 - Les variables Z et T sont-elles indépendantes?
- 9. Calculer la loi conditionnelle de Z sachant X = k.