Manipulations algébriques

Exercice 1

- 1. Simplifier l'expression (sous forme de 2 facteurs) : $A = \frac{\sqrt[5]{96}}{(\sqrt[3]{\sqrt{3}})^2\sqrt{18}} \frac{\sqrt[5]{90}}{\sqrt[3]{\sqrt{3}}}$
- 2. Pour $x \ge 0$ et $x \ne 1$, simplifier l'expression (en factorisant) $\frac{\sqrt{x}-1}{x-1}$. De même pour $a,b \ge 0$, $(a^2 + a^{\frac{4}{3}}b^{\frac{2}{3}})^{\frac{1}{2}} + (b^2 + a^{\frac{4}{3}}b^{\frac{2}{3}})^{\frac{1}{2}}$ $b^{\frac{4}{3}}a^{\frac{2}{3}})^{\frac{1}{2}}$.

Exercice 2

Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$3^{x+1} + 9^x = 4$$

2.
$$\left(\frac{4}{9}\right)^x \left(\frac{8}{27}\right)^{1-x} = \frac{2}{3}$$

3.
$$x^{\sqrt{x}} = \sqrt{x}^x$$
.

Fonctions et puissances réelles

Exercice 3

Etudier la fonction $f: x \mapsto x + \frac{48}{3\pi}$.

Exercice 4

On considère la fonction $f: x \mapsto \frac{\ln(x)}{\sqrt{x}}$. On note T la tangente à sa courbe représentative en 1. Tracer ces courbes en précisant leurs positions relatives.

Indication : pour la position relative au voisinage de 1 (qui nous suffit pour le tracé), utiliser les développements (expression en o, en posant x = 1 + u pour avoir $u \underset{x \to 1}{\rightarrow} 0$).

Exercice 5

Donner la limite de $\sqrt[n]{x}$ dans deux cas: on fixe n et on fait trendre x vers $+\infty$, puis on fixe $x \ge 0$ et on fait trendre $n \ vers + \infty$.

Exercice 6

- 1. Soit u une fonction définie et dérivable sur un intervalle I à valeurs strictement positives et v une fonction dérivables sur I. Montrer que $x \mapsto u(x)^{v(x)}$ est dérivable et calculer sa dérivée.
 - Cette formule n'est pas à retenir, mais il faut savoir en retrouver des cas particuliers, comme dans la question suivante.
- 2. Etudier $f: x \mapsto x^x$.

Exercice 7

On pose $f: x \mapsto \left(1 + \frac{1}{x}\right)^x$. Donner le domaine de définition de f et étudier ses limites et asymptotes éventuelles. On ne demande pas les variations.

Croissances comparées

Exercice 8

On pose $f: x \mapsto e^{-\frac{1}{x^2}}$ et f(0) = 0. Montrer que $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, puis que f est dérivable en 0 puis enfin que $f' \in \mathcal{C}(\mathbb{R}, \mathbb{R})$.

Exercice 9

Simplifier les expressions (on a indiqué en indice des o le points qui nous intéresse)

1.
$$u_n = 5 + o_{+\infty}(n) + o_{+\infty}(\frac{1}{n}) + o_{+\infty}(\ln n)$$
.

4.
$$f_4(x) = x^3 + 2 + o_0(x) + o_0(x^2)$$

2.
$$v_n = \sqrt{n} + o_{+\infty} \left(\frac{n}{\ln n} \right) + o_{+\infty} \left(n^{\frac{26}{27}} \right)$$

5.
$$f_5(x) = x + o_0\left(\frac{1}{\sqrt{x}}\right) + o_0(\ln x)$$

3.
$$w_n = 1 + o_{+\infty} \left(e^{((\ln n)^2)} \right) + o_{+\infty} \left(n^2 \right)$$
.

6.
$$f_6(x) = \ln^2(x) + o_0(x^{-2}) + o_0(\frac{1}{x})$$

Exercice 10

Déterminer un équivalent des procédés suivants :

1.
$$n \text{ fix}\acute{e}, \cos(nx) \frac{\sin((n+1)x)}{\sin(x)} \text{ en } 0.$$
 3. $\frac{\sqrt[4]{x+x^{\frac{6}{5}}}}{x^{-1}+1} \text{ en } 0.$ 4. $\sqrt{x+1}-\sqrt{x^2}$

3.
$$\frac{\sqrt[4]{x+x^{\frac{6}{5}}}}{x^{-1}+1}$$
 en 0.

5.
$$(x+1)^x - x^x$$
 en 0

2.
$$\frac{x^2 + \ln x}{x^{\frac{2}{3}} + (\frac{2}{3})^x} en + \infty$$

4.
$$\sqrt{x+1}-\sqrt{x^2+1}$$
 en 0 et en $+\infty$ 6. $\ln(1+e^{2x})$ en $+\infty$ puis en 0.

6.
$$\ln(1+e^{2x})$$
 en $+\infty$ puis en 0.