Table des matières

I Rayon do convergence

•	tayon de convergence	
	I.1	Série entière
	I.2	Convergence d'une série entière
	I.3	Calcul du rayon de convergence
	I.4	d'Alembert
II	I Propriétés de la somme, cas réel	
	II.1	Intégration
	II.2	Dérivation
III Développement en série entière		

I Rayon de convergence

I.1 Série entière

Définition 1

- Une série entière de variable $z \in \mathbb{K}$ est une série de la forme $\sum_{n \in \mathbb{N}} a_n z^n$ où $a_n \in \mathbb{C}$.
- Les termes de la suite $(a_n)_{n\in\mathbb{N}}$ sont appelés les coefficients de la série entière.
- Pour chaque $z \in \mathbb{K}$ on étudie la convergence de la série numérique $\sum_{n \in \mathbb{N}} a_n z^n$. L'ensemble des $z \in \mathbb{K}$ pour lesquels la série entière converge est appelé domaine de convergence.
- La somme de cette série entière est la **fonction** $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ définie sur le domaine de convergence.

Proposition 1 (Rappel)

Soit $(b_n) \in \mathbb{C}^{\mathbb{N}}$ une suites de nombres complexes.

$$b_n \underset{n \to +\infty}{\to} 0 \iff |b_n| \underset{n \to +\infty}{\to} 0$$

Définition 2

On considère deux séries entières $\sum\limits_{n\in\mathbb{N}}a_nz^n$ et $\sum\limits_{n\in\mathbb{N}}b_nz^n.$

1. La série somme $\sum_{n\in\mathbb{N}} a_n z^n + \sum_{n\in\mathbb{N}} b_n z^n$ est la série entière $\sum_{n\in\mathbb{N}} (a_n + b_n) z^n$.

- 2. Le produit de $\sum_{n\in\mathbb{N}}a_nz^n$ par le scalaire $\lambda\in\mathbb{C}$ est la série entière $\sum_{n\in\mathbb{N}}\lambda a_nz^n$.
- 3. La série produit est la série entière $\sum\limits_{n\in\mathbb{N}}c_nz^n$ où

$$\forall n \in \mathbb{N} \ c_n = \sum_{k=0}^n a_k b_{n-k}$$

1/3

I.2 Convergence d'une série entière

Définition 3

2

Soit $R \in \mathbb{R}^+$. On appelle disque ouvert de centre O et de rayon R l'ensemble $D_R = \{z \in \mathbb{C} | |z| < R\}$.

Théorème 1 (Lemme d'Abel)

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$. Supposons qu'il existe r > 0 tel que $(|a_n|r^n)$ est une suite bornée. Alors pour tout $z \in D_r$ (ie |z| < r)

$$|a_n z^n| = O_{+\infty}\left(\left(\frac{|z|}{r}\right)^n\right)$$
 et donc $\sum_{n \in \mathbb{N}} a_n z^n$ converge.

Définition-Proposition 1

Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière.

- 1. L'ensemble $I = \{r \in \mathbb{R}^+ | (|a_n|r^n)_{n \in \mathbb{N}} \text{ est bornée} \}$ est un intervalle de \mathbb{R} de la forme $[0, \dots$ (la deuxième borne est ouverte ou fermée, finie ou non)
- 2. $R=\sup(I)\in\mathbb{R}^+\cup\{+\infty\}$ est appelé rayon de convergence de la série entière $\sum\limits_{n\in\mathbb{N}}a_nz^n$

Théorème 2

Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon de convergence R>0.

- 1. Si |z| < R alors la série numérique $\sum_{n \in \mathbb{N}} a_n z^n$ converge absolument donc converge.
- 2. Si |z|>R alors la série numérique $\sum\limits_{n\in\mathbb{N}}a_nz^n$ diverge grossièrement.
- 3. Si |z|=R on ne peut pas conclure sur la nature de $\sum_{n\in\mathbb{N}}a_nz^n$.

I.3 Calcul du rayon de convergence

Proposition 2

Soient $\sum_{n\in\mathbb{N}} a_n z^n$ une série de convergence de rayon de convergence R_a et $\sum_{n\in\mathbb{N}} b_n z^n$ une série entière de rayon de convergence R_b

1. Si $a_n = O_{+\infty}(|b_n|)$ alors $R_a \geqslant R_b$ (un cas particulier : $a_n = o_{+\infty}(|b_n|)$).

2. Si $|a_n| \underset{+\infty}{\sim} |b_n|$ alors $R_a = R_b$.

Théorème 3

Soient $\sum_{n\in\mathbb{N}}a_nz^n$ une série de convergence de rayon de convergence R_a et $\sum_{n\in\mathbb{N}}b_nz^n$ une série entière de rayon de convergence R_b .

- 1. Pour $\lambda \in \mathbb{C}^*$, la série entière $\sum_{n \in \mathbb{N}} \lambda a_n z^n$ est de rayon de convergence R_a . Le cas $\lambda = 0$ donne un rayon infini.
- 2. Le rayon de convergence R de la série somme vérifie $R = \min(R_a, R_b)$ si $R_a \neq R_b$ et $R \geqslant R_a$ dans le cas $R_a = R_b$.
- 3. Le rayon de convergence R de la série produit vérifie $R \geqslant \min(R_a, R_b)$.

Proposition 3

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$. Les séries entières $\sum a_n z^n$ et $\sum n a_n z^n$ ont le même rayon de convergence.

I.4 d'Alembert

Théorème 4 (Règle de d'Alembert)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N} \ u_n > 0$. Supposons que $\frac{u_{n+1}}{u_n} \to \ell$.

- 1. Si $\ell < 1$ alors $\sum u_n$ converge (on a même $\forall q \in]\ell, 1[\ u_n = o_{+\infty}(q^n))$.
- 2. Si $\ell > 1$ alors $\sum u_n$ diverge grossièrement $(u_n \to +\infty)$.
- 3. Si l=1 la série $\sum u_n$ peut être divergente ou convergente.

II Propriétés de la somme, cas réel

II.1 Intégration

Théorème 5

Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ la somme d'une série entière de rayon de convergence R > 0. Alors f est continue sur]-R,R[.

Théorème 6 (Intégration terme à terme)

Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ la somme d'une série entière de rayon de convergence R > 0.

$$\forall x \in]-R, R[\int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} x^n$$

Remarquons que les séries entières qui interviennent ici sont de rayon de convergence R exactement d'après 3

Corollaire 1

Sous les mêmes hypothèses que le théorème, on peut calculer, pour $a,b\in]-R,R[$ l'intégrale $\int\limits_a^b f(t)\mathrm{d}t$ en intégrant la somme terme à terme.

L'hypothèse importante est que a,b doivent être à l'intérieur de] -R,R[et pas une borne de cet intervalle.

II.2 Dérivation

Théorème 7 (Dérivation terme à terme)

Soit f la somme de la série entière $\sum_{n\in\mathbb{N}} a_n x^n$ de rayon de convergence R>0.

f est dérivable sur]-R,R[et pour $x\in]-R,R[$ on a

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

. Remarquons que la série entière qui définit f' est également de rayon de convergence R.

Théorème 8

Soit f la somme de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$ de rayon de convergence R>0. Alors f est de classe \mathcal{C}^∞ sur]-R,R[et les dérivées de f sont obtenues par dérivation terme à terme de la série entière, ou encore

$$\forall k \in \mathbb{N} \forall x \in]-R, R[\ f^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k} = \sum_{k=0}^{+\infty} \frac{(n+k)!}{n!} a_{n+k} x^n$$

Corollaire 2

Soit $\sum_{n\in\mathbb{N}}a_nx^n$ une série entière de rayon de convergence R>0 et f sa somme. Alors $a_n=\frac{f^{(n)}(0)}{n!}$ pour tout $n\in\mathbb{N}$.

Corollaire 3 ("Identification" (unicité) des coefficients)

Les coefficients d'une série entière de rayon non nul sont uniques.

Plus précisément, si $\sum\limits_{n\in\mathbb{N}}a_nx^n$ et $\sum\limits_{n\in\mathbb{N}}b_nx^n$ sont de rayons non nuls et vérifient pour un $\alpha>0$ que

$$\forall x \in]-\alpha, \alpha \left[\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} b_n x^n\right]$$

alors $\forall n \in \mathbb{N} \ a_n = b_n$.

III Développement en série entière

III.1 Taylor

Théorème 9 (Formule de Taylor avec reste intégral)

Soit $f \in \mathcal{C}^{n+1}(I,\mathbb{R})$, (où I est un intervalle non vide et non réduit à un point) $a, x \in I$. Alors

$$f(x) = \sum_{i=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Théorème 10 (Inégalité de Taylor-Lagrange)

Soit $f \in \mathcal{C}^{n+1}(I,\mathbb{R})$ (où I est un intervalle non vide et non réduit à un point) et $a, x \in I$. On pose M_{n+1} la valeur maximale de $|f^{(n+1)}(t)|$ pour t entre a et x

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| \le M_{n+1} \frac{|x - a|^{n+1}}{(n+1)!}.$$

III.2 Fonctions développables

Définition 4

Soit f une fonction de classe \mathcal{C}^{∞} sur I tel que $0 \in I$ et 0 n'est pas une borne de I. Le **développement de Taylor** de f est la série entière $\sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n$.

Définition 5

Soit $f: I \to \mathbb{K}$ où I est intervalle qui contient 0 (et 0 n'est pas une borne de I). On dit que f est **développable en série entière** (au voisinage de 0) ssi il existe r > 0 et une série entière $\sum_{n \in \mathbb{N}} a_n x^n$ tels que :

$$-] - r, r[\subset I$$

$$- \sum_{n \in \mathbb{N}} a_n x^n \text{ est de rayon } R \geqslant r$$

$$- \forall x \in]-r, r[f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Autrement dit, f est la somme d'une série entière sur un intervalle $]-r,r[\neq\emptyset]$ contenu dans I.

La série entière $\sum_{n\in\mathbb{N}}a_nx^n$ est appelée **développement en série entière** de f.

III.3 Développements en pratique

Proposition 4

sin et cos sont développable en série entière sur $\mathbb R$ et pour tout $x \in \mathbb R$

$$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ et } \sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

Proposition 5

sh et ch sont développable en série entière sur $\mathbb R$ et pour tout $x\in\mathbb R$

$$\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} x^{2n} \text{ et } \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} x^{2n+1}$$

Proposition 6

Soit $\alpha \in \mathbb{R}$. $f_{\alpha}: x \mapsto (1+x)^{\alpha}$ est développable en série entière sur] -1,1[et

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n$$

Si $\alpha \in \mathbb{N}$, le rayon de convergence est $+\infty$ et le développement est en fait une somme finie.