Exercice 1

- 1. (a) g est définie sur $D = \{x \in \mathbb{R} | ax > 0\} = \mathbb{R}_+^*$ car a > 0. De plus, g est dérivable sur D en tant que composée de deux fonctions dérivables.
 - (b) Soit x > 0. $g'(x) = a \times \frac{1}{ax} = \frac{1}{x}$ Ainsi $(g \ln)' = 0$ et donc cette fonction est constante sur l'intervalle \mathbb{R}_+^* . On a donc $\forall x > 0$ $g(x) = \ln(x) + K$.
 - (c) On évalue la relation précédente en 1. On trouve $g(1) = \ln(a) = \ln(1) + K = K$. Ainsi pour tout x > 0 on a $\ln(ax) = \ln(x) + \ln(a)$.
- 2. On a maintenant $\ln\left(\frac{1}{a}\right) + \ln(a) = \ln(1) = 0$. Ainsi $\ln\left(\frac{1}{a}\right) = -\ln(a)$.
- 3. On veut calculer la limite en 0 de ln. Soit x > 0. On pose $t = \frac{1}{x} \underset{x \to 0^+}{\to} +\infty$. Or $\ln(x) = \ln(\frac{1}{t}) = -\ln(t) \underset{t \to +\infty}{\to} -\infty$. Finalement $\ln(x) \underset{x \to 0^+}{\to} -\infty$
- 4. (a) Directement, $\int_{1}^{x} \frac{1}{t} dt = \ln(x) \ln(1) = \ln(x)$ car ln est une primitive de f.
 - (b) Soit $t \ge 1$. On a alors $0 < \sqrt{t} \le t$ et par décroissance de la fonction inverse sur \mathbb{R}_+^* , $\frac{1}{t} \le \frac{1}{\sqrt{t}}$.
 - (c) On intègre la relation précédente entre 1 et x Remarquons que $x\geqslant 1$ et donc on intègre "dans le bon sens". On obtient $\ln(x)\leqslant \int\limits_1^x \frac{1}{\sqrt{t}}\mathrm{d}t$. Or

$$\int_{1}^{x} \frac{1}{\sqrt{t}} dt = \int_{1}^{x} t^{-\frac{1}{2}} dt = \left[2t^{\frac{1}{2}}\right]_{1}^{x} = 2(\sqrt{x} - 1)$$

- (d) On divise la relation précédente par x>0: $\frac{\ln(x)}{x}\leqslant \frac{2}{\sqrt{x}}-\frac{2}{x}$. De plus, pour $x\geqslant 1,\ 0\leqslant \frac{\ln x}{x}$. Finalement, par encadrement, $\frac{\ln x}{x}\underset{x\to+\infty}{\longrightarrow}0$.
- 5. Soit x > 0. On pose $u = \frac{1}{x}$ et donc $u \to +\infty \iff x \to 0^+$. Alors $x \ln(x) = -\frac{\ln(u)}{u} \underset{u \to +\infty}{\to} 0^-$. Donc $x \ln x \underset{x \to 0}{\to} 0$
- 6. La tangente à la courbe de ln en 1 à pour équation $y = \ln(1) + \ln'(1)(x-1) = x-1$.

