PTSI 2016-2017 1/2

I Coordonnées

I.1 Bases du plan

Définition 1

- 1. Deux vecteurs \vec{u} et \vec{v} du plan sont dits colinéaires si il existe $(\lambda, \mu) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ tels que $\lambda \vec{u} + \mu \vec{v} = 0$. (On est obligé d'introduire deux nombres réels si on veut éviter une distinction de cas quand l'un des vecteur est nul).
 - On peut ainsi dire que l'un des deux est proportionnel à l'autre.
- 2. Une base du plan est la donnée d'un couple de vecteurs (\vec{u}, \vec{v}) tel que tout vecteur \vec{w} du plan s'écrit de manière unique sous la forme $\vec{w} = x\vec{u} + y\vec{v}$ avec $x, y \in \mathbb{R}$. x et y sont alors les coordonnées (cartésiennes) de \vec{w}
- 3. Une base (\vec{u}, \vec{v}) est dite orthonormée directe ssi $||\vec{u}|| = ||\vec{v}|| = 1$, et l'angle orienté entre \vec{u} et \vec{v} est $(\vec{u}, \vec{v}) = +\frac{\pi}{2}$.

Théorème 1

Soient \vec{u}, \vec{v} deux vecteurs. (\vec{u}, \vec{v}) est une base du plan ssi ils sont non colinéaires ssi la matrice dont ce sont les colonnes est inversible.

I.2 Repères

Définition 2

Un repère \mathcal{R} (cartésien) du plan est la donnée d'une base $(\vec{\imath}, \vec{\jmath})$ et d'un point O. Si M est un point du plan, il existe alors un unique couple de réel (x,y) tel que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$. Ce sont les coordonnées (cartésiennes) de M dans le repère \mathcal{R} .

Un tel repère est dit orthonormé direct ssi la base $(\vec{\imath}, \vec{\jmath})$ est une base orthonormée directe.

Définition 3

Soit \vec{u} un vecteur du plan de coordonnées (x,y), on appelle norme de \vec{u} le réel

$$||u|| = \sqrt{x^2 + y^2}$$

Soient A et B deux points du plan. On appelle distance de A à B le nombre

$$d(A,B) = AB = ||AB||$$

Théorème 2

Soient A, B, C trois points du plan, et \vec{u}, \vec{v} deux vecteurs.

- 1. La distance entre deux points (tout comme la norme d'un vecteur) ne dépend pas du choix du repère orthonormal.
- 2. $AC \leq AB + BC$ et $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$. Ces distances (resp. normes) sont égales ssi A, B, C sont alignés dans cet ordre (resp. \vec{u} et \vec{v} sont colinéaires de même sens)

I.3 Coordonnées polaires

Définition 4

Soit M un point du plan repéré par un ROND. Tout couple $(r, \theta) \in \mathbb{R}^2$ tels que $\overrightarrow{OM} = r\overrightarrow{u_{\theta}}$ est un couple de coordonnées polaires de M.

- 1. Les coordonnées polaires de O sont les couples $(0,\theta)$ avec $\theta \in \mathbb{R}$.
- 2. Si $M \neq O$, on note (r, θ) un couple de coordonnées polaires. Alors r = OM et $\theta = (\vec{\imath}, \overrightarrow{OM})$ ou alors r = -OM et $\theta = \pi + (\vec{\imath}, \overrightarrow{OM})$

Proposition 1

Il y a unicité des coordonnées polaires si on impose r > 0 et $\theta \in]-\pi,\pi].$

II Opérations sur les vecteurs

II.1 Rappels sur les complexes

II.2 Produit scalaire

Définition 5

Soit \vec{u} et \vec{v} deux vecteurs du plan. On appelle produit scalaire de \vec{u} et \vec{v} et on note $\vec{u}.\vec{v}$ le $r\acute{e}l \ \vec{u}.\vec{v} = \begin{cases} \|\vec{u}\| \|\vec{v}\| \cos(\vec{u},\vec{v}) & si \ \vec{u} \neq \vec{0} \ et \ \vec{v} \neq \vec{0} \\ 0 & sinon \end{cases}.$

Théorème 3 (Propriétés du produit scalaire)

On se place dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$

- 1. Soient \vec{u} et \vec{v} deux vecteurs du plan. Alors $\vec{u} \perp \vec{v} \iff \vec{u}.\vec{v} = 0$.
- 2. $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.
- 3. Propriétés de l'application $\left\{ \begin{array}{ccc} \mathcal{P} \times \mathcal{P} & \to & \mathbb{R} \\ (\vec{u}, \vec{v}) & \mapsto & \vec{u}.\vec{v} \end{array} \right. :$
 - (a) Symétrie: $\forall \vec{u}, \vec{v} \in \mathcal{P} \ \vec{u}.\vec{v} = \vec{v}.\vec{u}$
 - (b) Bilinéarité : Soient $\vec{u}, \vec{v}, \vec{w} \in \mathcal{P}$ et $\lambda, \mu \in \mathbb{R}$

$$\left\{ \begin{array}{ll} \textit{Lin\'earit\'e à droite} & \vec{u}.(\lambda\vec{v}) = \lambda(\vec{u}.\vec{v}) \ et \ \vec{u}.(\vec{v}+\vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w} \\ \textit{Lin\'earit\'e à gauche} \ (\lambda\vec{u} + \mu\vec{v}).\vec{w} = \lambda\vec{u}.\vec{w} + \mu\vec{v}.\vec{w} \end{array} \right.$$

4. $Si \ \vec{u} = (x, y) \ et \ \vec{v} = (x', y') \ alors \ \vec{u}. \vec{v} = xx' + yy' \ De \ plus \ cette \ expression \ est \ valable pour \ des \ coordonnées \ dans \ l'importe \ quelle \ BON.$

Corollaire 1

on $a M : \begin{pmatrix} \overrightarrow{OM} \cdot \overrightarrow{u} \\ \overrightarrow{OM} \cdot \overrightarrow{v} \end{pmatrix}$ et $\overrightarrow{w} = \begin{pmatrix} \overrightarrow{w} \cdot \overrightarrow{u} \\ \overrightarrow{w} \cdot \overrightarrow{v} \end{pmatrix}$ (dans \mathcal{R}).

Déterminant

Définition 6

Soient \vec{u} et \vec{v} deux vecteurs du plan. On appelle déterminant de (\vec{u}, \vec{v}) et on note $\det(\vec{u}, \vec{v})$ $le \ r\acute{e}el \ \det(\vec{u}, \vec{v}) = \begin{cases} \|\vec{u}\| \|\vec{v}\| \sin(\vec{u}, \vec{v}) & si \ \vec{u} \neq \vec{0} \ et \ \vec{v} \neq \vec{0} \\ 0 & sinon \end{cases}.$

Théorème 4

- 1. Soient \vec{u} et \vec{v} deux vecteurs. Alors \vec{u} et \vec{v} sont colinéaires \iff $\det(\vec{u}, \vec{v}) = 0$
- 2. Trois points A, B, C sont alignés ssi $\det(\overrightarrow{AC}, \overrightarrow{AC}) = 0$.
- 3. Si $\vec{u} = (x, y)$ et $\vec{v} = (x', y')$ alors $\det(\vec{u}, \vec{v}) = xy' yx'$
- 4. Propriétés de l'application $\left\{ \begin{array}{ccc} \mathcal{P} \times \mathcal{P} & \to & \mathbb{R} \\ (\vec{u}, \vec{v}) & \mapsto & \det(\vec{u}, \vec{v}) \end{array} \right. :$
 - (a) Anti-symétrie $\det(\vec{u}, \vec{v}) = -\det(\vec{v}, \vec{u})$
 - (b) $\begin{cases} Lin\acute{e}arit\acute{e}\ \grave{a}\ droite & \det(\vec{u},\lambda\vec{v}+\mu\vec{w}) = \lambda \det(\vec{u},\vec{v}) + \mu \det(\vec{u},\vec{w}) \\ Lin\acute{e}arit\acute{e}\ \grave{a}\ gauche & \det(\lambda\vec{u}+\mu\vec{v},\vec{w}) = \lambda \det(\vec{u},\vec{w}) + \mu \det(\vec{v},\vec{w}) \end{cases}$

Proposition 2

Une base (\vec{u}, \vec{v}) du plan est directe ssi $\det(\vec{u}, \vec{v}) > 0$.

Equations géométriques

III.1 Généralités

III.2Droites

Définition 7

Une droite \mathcal{D} du plan est la donnée d'un point A et d'un vecteur directeur $\vec{u} \neq \vec{0}$. La droite $\mathcal D$ est alors l'ensemble des points B tels que \overrightarrow{AB} est colinéaire à \overrightarrow{u} ou encore $\overrightarrow{AB}=$ $\lambda \vec{u} \iff B - A = \lambda \vec{u} \iff B = A + \lambda \vec{u}.$

On note donc $\mathcal{D} = A + \text{Vect}(\vec{u})$. Ceci est la représentation paramétrique de \mathcal{D} .

Si D passe par l'origine du repère, on dira que D est une droite vectorielle et on note $\mathcal{D} = \operatorname{Vect}(\vec{u})$. Dans tous les cas, $\operatorname{Vect}(\vec{u})$ est appelée la **direction** de \mathcal{D} .

Proposition 3

Soit $\mathcal{R} = (O, \vec{u}, \vec{v})$ un repère orthonormé du plan. Alors pour tout point M et vecteur \vec{w} La droite $\mathcal{D} = A + \mathrm{Vect}(\vec{u}) = \begin{pmatrix} x_A \\ y_A \end{pmatrix} + \mathrm{Vect}(\begin{pmatrix} a \\ b \end{pmatrix})$ possède une équation de la forme -bx + ay + c = 0 où $c \in \mathbb{R}$. \mathcal{D} est une droite vectorielle ssi c = 0.

Proposition 4

Tout ensemble d'équation ax + by + c = 0 avec a, b non tous les deux nul est une droite du plan dont $\binom{-b}{a}$ est un vecteur directeur.

Définition 8

Soit \mathcal{D} une droite. Un vecteur normal à \mathcal{D} est un vecteur orthogonal à tout vecteur contenu dans \mathcal{D} . (ie. à tout vecteur de la forme \overrightarrow{AB} avec $A, B \in \mathcal{D}$).

Proposition 5

Plus précisément, si \mathcal{D} : ax + by + c = 0 alors $\begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal non nul. L'ensemble des vecteurs normaux à \mathcal{D} est alors $\operatorname{Vect}\begin{pmatrix} a \\ b \end{pmatrix}$) qui est l'unique droite vectorielle perpendiculaire à \mathcal{D} .

Corollaire 2

- 1. Un vecteur normal à \mathcal{D} : ax + by + c = 0 est $\begin{pmatrix} a \\ b \end{pmatrix}$
- 2. Etant donné $\vec{n} \neq \vec{0}$ et A un point il existe une unique droite passant par A et dont \vec{n} est un vecteur normal (on pourra dire "et normale à \vec{n} ").

III.3 Cercles

Définition 9

Le cercle de rayon R > 0 et de centre Ω est l'ensemble des points $\mathcal{C} = \{M | \Omega M = R\}$, l'ensemble des points à une distance R exactement de Ω .

Proposition 6

Soit C le cercle de rayon R > 0 et de centre $\Omega: \begin{pmatrix} x_{\Omega} \\ y_{\Omega} \end{pmatrix}$. C a pour équation $(x - x_{\omega})^2 + (y - y_{\Omega})^2$ y_{Ω})² = R^2 .

Proposition 7

Soient $a,b \in \mathbb{R}$, R > 0. L'ensemble d'équation $(x-a)^2 + (y-b)^2 = R^2$ est le cercle de rayon R et de centre $\begin{pmatrix} a \\ b \end{pmatrix}$

Proposition 8

Soient A, B deux points distincts fixés du plan. L'ensemble des points M vérifiant $\overrightarrow{MA}.\overrightarrow{MB} =$ 0 est le cercle de diamètre [AB].