Devoir maison 13

A rendre le au plus tard le 16/02/2021.

Exercice 1

On considère dans cet exercice une rotation de \mathbb{R}^3 , dont on notera la base canonique \mathcal{B}_c . Le produit scalaire utilisé est le produit scalaire canonique.

Notons r la rotation d'axe orienté par $u \in \mathbb{R}^3$ un vecteur unitaire et d'angle $\theta \in \mathbb{R}$.

- 1. Rappeler la matrice de r dans une base $\mathcal{B} = (u, v, w)$ orthonormée directe et dont le premier vecteur est u. Que vaut la trace de u?
- 2. On souhaite maintenant pouvoir calculer r(X) pour un $X \in \mathbb{R}^3$ dont les coordonnées seront données dans \mathcal{B}_c . On fixe pour le reste de l'exercice un $X \in \mathbb{R}^3$. Montrer, en utilisant les coordonnées de X dans \mathcal{B} , que la projection orthogonale de X sur D = Vect(u) est $p_D(X) = \langle X, u \rangle u$.
- 3. Que peut-on dire du vecteur $X p_D(X)$? On pourra noter $P = \text{Vect}(u)^{\perp}$ le plan normale à u. (Question subsidiaire : si on note $u = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, comment traduire l'hypothèse u est de norme 1, et que dire sur une équation de P?)
- 4. On note $Y = X P_D(X)$ et $Z = u \wedge Y$. En supposant de $Y \neq 0_{\mathbb{R}^3}$, que dire de la base (u, Y', Z') où $Y' = \frac{Y}{\|Y\|}$ et $Z' = \frac{Z}{\|Z'\|}$? En déduire que $r(Y) = \cos(\theta)Y + \sin(\theta)Z$.
- 5. Montrer que $r(X) = \cos(\theta)X + (1 \cos(\theta)) < X, u > u + \sin(\theta)u \wedge X$. On pourra comparer $u \wedge X$ et $u \wedge Y$.
- 6. Bonus : en notant $u = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, en déduire (éventuellement sous forme de somme) la matrice de r dans la base canonique.