Table des matières

I Paramétrages I.1

II Equation cartésienne

II.1	Equation explicite																
II.2	Equation implicite																

III Surfaces particulières

Paramétrages

Courbes paramétrées

Définition 1 Une courbe paramétrée de l'espace est une fonction $f:t\mapsto M(t)=\begin{pmatrix} x(t)\\y(t)\\y(t)\end{pmatrix}$ définie sur

un intervalle I non trivial.

Son support Γ est l'ensemble $\{M(t)|t\in I\}=f(I)$. C'est l'ensemble que l'on cherche à tracer ou étudier.

Si Γ est inclus dans un plan, on dira que f (ou abusivement Γ) est une courbe plane, sinon on dit que f est une courbe gauche.

Définition-Proposition 1

Soit $f:t\mapsto M(t)$ une courbe paramétrée définie sur I, dérivable. On note Γ son support.

- 1. Pour $t_0 \in I$, le point $M(t_0)$ est dit **regulier** ssi $f'(t_0) \neq \vec{0}$.
- 2. Si $M(t_0)$ est régulier, la tangente à Γ en $M(t_0)$ est dirigée par $f'(t_0)$.

Surfaces paramétrées

Définition 2

On appelle nappe paramétrée ou surface paramétrée une fonction de classe \mathcal{C}^k $(k \geqslant 1)$ définie sur un ouvert U de \mathbb{R}^2 et à valeurs dans \mathbb{R}^3 . Une telle fonction f sera notée

$$f:(u,v)\mapsto M(u,v)=\begin{pmatrix}x(u,v)\\y(u,v)\\z(u,v)\end{pmatrix}.$$

Le support d'une surface paramétrée est l'ensemble $S = \{M(u,v) | (u,v) \in U\} = f(U)$.

Définition 3

Soit $f:(u,v)\mapsto M(u,v)$ une surface paramétrée de support S. Une courbe **tracée sur** S est une courbe paramétrée dont le support est inclus dans S.

Définir une telle courbe revient à donner deux fonctions $u, v \in \mathcal{C}^1(I, \mathbb{R})$ (I un intervalle) telles que $\forall t \in I \ (u(t), v(t)) \in U$. On obtient alors une courbe $\gamma : t \mapsto M(u(t), v(t))$. Son support Γ est inclus dans S.

Théorème 1

Soit $\gamma: t \mapsto M(u(t), v(t))$ définie sur I une courbe tracée sur S (notation de la définition). Soit $t_0 \in I$. Si $\gamma(t_0) = M(u(t_0), v(t_0)) = M(u_0, v_0)$ est un point régulier alors la tangente en ce point a un vecteur directeur appartenant à $\operatorname{Vect}(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0))$

Définition 4

Soit $f:(u,v)\mapsto M(u,v)$ une surface paramétrée définie sur un ouvert $U\subset\mathbb{R}^2$. On note S son support. Soit $(u_0, v_0) \in U$ et $M_0 = M(u_0, v_0)$.

- 1. On dit dit M_0 est un point **regulier** de S (ou de f) ssi $\left(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0)\right)$ est libre c'est à dire ssi $\frac{\partial M}{\partial u}(u_0, v_0) \wedge \frac{\partial M}{\partial v}(u_0, v_0) \neq \vec{0}$. Sinon on dit que M_0 est critique ou singulier.
- 2. Si M_0 est régulier, on appelle plan tangent à S en M_0 le plan

$$M_0 + \operatorname{Vect}(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0)).$$

Définition 5

En un point régulier M_0 , la droite passant par M_0 et normale au plan tangente est appelée normale à la surface en M_0 .

Equation cartésienne

Equation explicite

II.2Equation implicite

Définition 6

Soit U un ouvert de \mathbb{R}^3 et $f \in \mathcal{C}^1(U,\mathbb{R})$. On appelle surface (implicite) d'équation

$$f(x,y,z)=0$$
 l'ensemble $\Sigma=\{egin{pmatrix}x\\y\\z\end{pmatrix}\in\mathbb{R}^3|\ f(x,y,z)=0\}$ (l'ensemble des solutions

de l'équation).

Un point $M \in \Sigma$ est dit **régulier** ssi $\overrightarrow{qrad} f(M) \neq \vec{0}$ et singulier sinon.

2/2 PT 20-21

Théorème 2 (Plan tangent)

Soit U un ouvert de \mathbb{R}^3 et $f \in \mathcal{C}^1(U,\mathbb{R})$. Soit Σ la surface d'équation f(x,y,z)=0 et $M_0 \in \Sigma$ un point régulier.

Alors le plan tangent à Σ en M_0 est le plan passant par M_0 et normal à $\overrightarrow{grad} f(M_0)$ ie le plan d'équation

$$(x - x_0)\frac{\partial f}{\partial x}(x_0, y_0, z_0) + (y - y_0)\frac{\partial f}{\partial y}(x_0, y_0, z_0) + (z - z_0)\frac{\partial f}{\partial z}(x_0, y_0, z_0) = 0$$

II.3 Intersection de surfaces

Définition 7

Soit U un ouvert de \mathbb{R}^3 et $f, g \in \mathcal{C}^1(U, \mathbb{R})$.

On appelle courbe d'équation cartésienne $\Gamma: \begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$ l'intersection des des surfaces ainsi définies (cette intersection peut être une surface, un ou des points, vide...).

Un point $M \in \Gamma$ est dit régulier si et seulement si $\overrightarrow{grad} f(M) \wedge \overrightarrow{grad} g(M) \neq \vec{0}$

Théorème 3 Avec les notations de la définition précédente, si $M_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ est un point régulier de Γ alors la tangente à Γ en M_0 est la droite $M_0 + \operatorname{Vect}(\overrightarrow{grad}\,f(M_0) \wedge \overrightarrow{grad}\,g(M_0))$

III Surfaces particulières

III.1 Surfaces réglées

Définition 8

Une surface S est dite **réglée** ssi elle peut être écrite comme la réunion d'une famille de droites.

Plus précisément, S est réglée ssi il existe une surface paramétrée dont le support est S de la forme M(k,t) = A(t) + ku(t) où A, u sont de classe $C^k(I, \mathbb{R}^3)$ et u ne s'annule pas. M est alors définie sur $I \times \mathbb{R}$.

Pour un t fixé, la droite $\mathcal{D}_t = A(t) + \operatorname{Vect}(u(t))$ est une **génératrice** de S et on a $S = \bigcup_{t \in I} \mathcal{D}_t$

Proposition 1

Soit S une surface réglée. En un point régulier M_0 , le plan tangent contient la génératrice passant par M_0 .

Définition 9

- 1. Un **cône** est une surface engendrée par toutes les droites passant par un point fixe Ω et un point d'une courbe Γ .
- 2. Un **cylindre** est une surface engendrée par toute les droites dirigée par \vec{u} fixé et passant par un point d'une courbe Γ .

III.2 Surfaces de révolution

Définition 10

On appelle surface de révolution la surface S obtenue par rotation d'une courbe Γ par rotation autour d'une droite Δ .

- Δ est l'axe de S.
- Les intersections de S avec les plans orthogonaux à Δ sont soit vide soit des cercles d'axe Δ que l'on appelle parallèles de S.
- Un plan méridien de S est un plan qui contient Δ .
- Une méridienne de S est l'intersection de S avec un demi-plan, méridien délimité par Δ .