Matrices

Exercice 1

On note $(E_{i,j})_{(i,j)\in [1,n]^2}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$. Calculer $E_{i,j}E_{k,l}$ pour $i,j,k,l\in \mathbb{K}$

Calculer $AE_{i,j}$ et $E_{i,j}A$ pour $A \in \mathcal{M}_n(\mathbb{K})$.

Exercice 2 On considère la matrice $A = \begin{pmatrix} 3 & -1 & 5 \\ 9 & -3 & 15 \\ -3 & 1 & -5 \end{pmatrix}$

- 1. Calculer rg(A).
- 2. Montrer qu'il existe deux colonnes $U, V \in \mathbb{R}^3$ telles que $A = U^t V$.
- 3. En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 3

On considère deux colonnes $U, V \in \mathbb{K}^n$ et $A = U^t V \in \mathcal{M}_n(\mathbb{K})$.

- 1. Que vaut A si l'une des colonnes U, V est nulle? Dans la suite on suppose que $U \neq 0$ et $V \neq 0$.
- 2. Montrer que rg(A) = 1.
- 3. Soit $B \in \mathcal{M}_n(\mathbb{K})$. On suppose que $\operatorname{rg}(B) = 1$. Montrer qu'il existe des colonnes $U', V' \in \mathbb{K}^n$ non nulles telles que $B = U'^t V'$.

Exercice 4
Montrer l'inversibilité et calculer l'inverse de $\begin{pmatrix} 1 & \cdots & 1 \\ & \ddots & \vdots \\ (0) & & 1 \end{pmatrix}_{[n]}$

Exercice 5

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\forall M \in \mathcal{M}_n(\mathbb{K})$ AM = MA.

- 1. Déterminer toutes les matrices semblable à A.
- 2. En utilisant l'exercice 1, montrer qu'il existe $\lambda \in \mathbb{K}$ telle que $A = \lambda I_n$ (A est la matrice de l'homothétie de rapport λ dans toute base de \mathbb{K}^n).

Exercice 6 (\star)

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. On suppose que $\forall i \in [1,n] | a_{i,i}| > \sum_{j=1}^n |a_{i,j}|$. Montrer que A est

inversible.

On pourra raisonner par l'absurde et considérer la coordonnées de plus grand module d'un vecteur non nul du noyau de A.

Matrice d'une application

Exercice 7

Soit $f \in \mathcal{L}(\mathbb{R}^2)$ dont la matrice dans la base canonique est $M = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix}$. Montrer que

$$\mathcal{B} = (u, v) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 est une base de \mathbb{R}^2 et calculer $\mathrm{Mat}_{\mathcal{B}}(f)$.

Calculer rapidement ker(f) et Im(f).

Exercice 8 Montrer que les matrices $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ ne sont pas semblables.

Exercice 9

Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ dont les coefficients sont donnés par $a_{i,j} = \binom{j-1}{i-1}$ et $\varphi \in \mathcal{L}(\mathbb{R}_n)$ l'application canoniquement associée à A.

- 1. Pour $P \in \mathbb{R}_n[X]$, exprimer $\varphi(P)$
- 2. En déduire les coefficients de A^k pour $k \in \mathbb{N}$.
- 3. Même question avec k = -1 (que faut-il prouver avant?) puis $k \in \mathbb{Z}$.

Exercice 10

Soit $A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 1 & -1 \\ 4 & -2 & 2 \end{pmatrix}$. On considère E un espace vectoriel de dimension 3 et on

pose $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. On considère $f \in \mathcal{L}(E)$ tel que $\mathrm{Mat}_{\mathcal{B}}(f) = A$.

- 1. Calculer $\ker(f)$. On note u, v une base de cet espace.
- 2. On pose $w = e_1 e_2 + 2e_3$. Montrer que $\mathcal{B}' = (u, v, w)$ est une base de E.
- 3. Calculer $Mat_{\mathcal{B}'}(f)$.

Trace

Exercise 11. Soit $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ et $\varphi : \begin{cases} \mathcal{M}_2(\mathbb{K}) & \to \mathcal{M}_2(\mathbb{K}) \\ M & \mapsto AM \end{cases}$.

- 1. Montrer que $\varphi \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ et calculer sa trace.
- 2. Calculer A^2 et en déduire φ^2 . φ est-elle bijective?
- 3. Bonus 5/2: étudier $s = \frac{1}{5}\varphi$.

Exercice 12

On considère deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB - BA = A. Calculer $\operatorname{tr}(A^p)$ pour tout $p \in \mathbb{N}$.

Exercice 13

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Montrer que $(\forall M \in \mathcal{M}_n(\mathbb{K}) \operatorname{tr}(AM) = \operatorname{tr}(BM)) \iff A = B$.

Determinant

Exercice 14

Calculer (et factoriser)
$$\begin{vmatrix} 144 & 121 & 100 \\ 36 & 33 & 30 \\ 96 & 99 & 90 \end{vmatrix}$$
, $\begin{vmatrix} m & 1 & 2 \\ -1 & m+1 & 3 \\ 2m & 2 & 1-m \end{vmatrix}$, $\begin{vmatrix} 1 & 1 & 1 \\ \sin a & \sin b & \sin c \\ \cos a & \cos b & \cos c \end{vmatrix}$ $D(m,p) = \begin{vmatrix} \binom{m}{0} & \binom{m}{1} & \cdots & \binom{m}{p} \\ \binom{m+1}{1} & \binom{m+1}{1} & \cdots & \binom{m+1}{p} \\ \vdots & \vdots & \vdots & \vdots \\ \binom{m+p}{0} & \binom{m+p}{1} & \cdots & \binom{m+p}{p} \end{vmatrix}$.

Exercice 15 Soient
$$A, B, C$$
 trois points du plan de coordonnées $\begin{pmatrix} x_A \\ y_A \end{pmatrix}, \begin{pmatrix} x_B \\ y_B \end{pmatrix}, \begin{pmatrix} x_C \\ y_C \end{pmatrix}$ dans un repère orthonormé direct. Montrer que A, B, C sont aligné ssi $\begin{vmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{vmatrix} = 0$.

Etendre ce résultat à \mathbb{R}^3 .

Exercice 16

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Déterminer les valeurs de $\lambda \in \mathbb{R}$ telles que $\lambda I_3 - A$ ne soit pas inversible.

Exercice 17

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice anti-symétrique. Montrer que si A est inversible alors n est pair.

Soit E un K-espace vectoriel de dimension n et $f \in \mathcal{L}(E)$ telle que $f^2 = -Id_E$. Montrer que n est pair.

Plus technique

rence puis calculer d_n en fonction de n.

Exercice 20 a Soient $a, b \in \mathbb{C}$. Calculer a b a a b a a a

Exercice 21

On considère deux entiers m, p tels que $m \ge p > 0$ Calculer le déterminant carré de taille p+1, (les coefficients sont des coefficients binomiaux)

$$D(m,p) = \begin{pmatrix} \binom{m}{0} & \binom{m}{1} & \cdots & \binom{m}{p} \\ \binom{m+1}{1} & \binom{m+1}{1} & \cdots & \binom{m+1}{p} \\ \vdots & \vdots & \vdots & \vdots \\ \binom{m+p}{0} & \binom{m+p}{1} & \cdots & \binom{m+p}{p} \end{pmatrix}.$$

Exercice 22 Soient $a_1, \ldots, a_n \in \mathbb{K}$ deux à deux distincts On note $V_n(a_1, \ldots a_n) = \begin{vmatrix} 1 & a_1 & \ldots & a_1^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \ldots & a_n^{n-1} \end{vmatrix}_{[n]}$.

- 1. Caculer $V_2(a_1, a_2)$ et $V_3(a_1, a_2, a_3)$ sous forme factorisée.
- 2. On note $C_0, \ldots C_{n-1}$ les colonnes de $V_n(a_1, \ldots, a_n)$. En effectuant les opérations $C_{i+1} \leftarrow C_{i+1} - a_1 C_i$ de la droite vers la gauche, trouver une relation de récurrence liant V_n à V_{n-1} .
- 3. Exprimer $V_n(a_1,\ldots,a_n)$. Ce déterminant peut-il être nul?

4. On pose
$$\varphi : \begin{cases} \mathbb{K}_{n-1}[X] \to \mathbb{K}^n \\ P \mapsto \begin{pmatrix} P(a_1) \\ \vdots \\ P(a_n) \end{pmatrix} \end{cases}$$
. Calculer $\det(\varphi)$ et en déduire que φ est bijective.

Exercice 23 Soient $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ et $a, b \in \mathbb{R}$, $a \neq b$. Pour $x \in \mathbb{R}$ on pose $\Delta_n(x) = \begin{vmatrix} \lambda_1 + x & (a+x) \\ & \ddots & \\ (b+x) & & \lambda_n + x \end{vmatrix}$

- 1. Montrer que $\Delta_n(x)$ est une expression affine de x.
- 2. Calculer $\Delta_n(x)$ et en déduire $\Delta_n(0)$.