PT 21-22

Table des matières

Ι	Espaces vectoriels		
	I.1	Sous-espaces et dimension	
	I.2	Supplémentaires	
	I.3	Hyperplans	
	I.4	Sommes directes d'espaces vectoriels	
II	II Applications linéaires		
	II.1	Propriétés générales	
	II.2	Applications linéaires et dimension	
		Espaces stables	
III Endomorphismes particuliers			
	III.1	Homothéties	
	III.2	Projecteurs, symétries	
	III.3	Projection et espaces en somme directe	

I Espaces vectoriels

I.1 Sous-espaces et dimension

Définition 1

Soit E un \mathbb{K} -espace vectoriel.

- 1. On dit que E est de dimension finie ssi E possède une famille génératrice finie $E = \mathrm{Vect}(u_1, \dots, u_p)$ c'est à dire que chaque élément de $x \in E$ peut s'écrire sous la forme $x = \sum_{k=1}^p \lambda_k u_k$ où les $\lambda_k \in \mathbb{K}$ sont des scalaires.
- 2. Dans le cas où E est de dimension finie, E possède au moins une base et toutes les bases de E ont le même cardinal que l'on appelle la **dimension** de E et que l'on note $\dim_{\mathbb{K}}(E)$ ou plus simplement $\dim(E)$ s'il n'y a pas d'ambiguïté sur \mathbb{K}

Proposition 1 (Formules de dimension)

On considère E,F deux \mathbb{K} -espaces vectoriels de dimensions finies. Soit également $m,n\in\mathbb{N}\backslash\{0\}$

- 1. $\dim(E \times F) = \dim(E) + \dim(F)$
- 2. $\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$
- 3. $\dim(\mathcal{L}(E)) = (\dim(E))^2$
- 4. Si E, F sont deux sous-espaces d'un même espace vectoriel,

$$\dim(E+F) = \dim(E) + \dim(F) - \dim(E \cap F)$$

Théorème 1

1

3

Soit E un \mathbb{K} -espace vectoriel de dimension n et F un sous-espace de E.

- 1. F est de dimension fini et $\dim(F) \leq n$
- 2. $F = E \operatorname{ssidim}(F) = n$

I.2 Supplémentaires

Définition 2

Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces. La somme de F et G est $F+G=\{x_F+x_G | x_F \in F \text{ et } x_G \in G\}$. C'est un espace vectoriel et on a même $F+G=\operatorname{Vect}(F \cup G)$.

Définition 3

Soient E un \mathbb{K} -espace vectoriel et F,G deux sous-espaces. On dit que F et G sont supplémentaires dans E et on note $E=F\oplus G$ ssi

$$\forall x \in E \exists ! (x_F, x_G) \in F \times G \ x = x_F + x_G$$

Avec ces notations, x_F est appelé le projeté de x sur F dans la direction G (ou parallèlement à G) et x_G le projeté de x sur G dans la direction F.

Théorème 2 (Théorème de la base adaptée)

Soit E un espace de dimension fini et F, G des sous-espaces de E.

 $E=F\oplus G$ ssi la concaténation d'une base de F et d'une base de G est une base de E. On dit que la base obtenue (par concaténation) est **adaptée** à la somme $F\oplus G$. On a alors évidemment

$$\dim(E) = \dim(F) + \dim(G)$$

Corollaire 1

En dimension finie, tout sous-espace possède au moins un supplémentaire.

Corollaire 2

Dans un espace de dimension finie, on a

$$E = F \oplus G \iff \begin{cases} F + G = E \\ \dim(F) + \dim(G) = \dim(E) \end{cases} \iff \begin{cases} F \cap G = \{0_E\} \\ \dim(F) + \dim(G) = \dim(E) \end{cases}$$

I.3 Hyperplans

Définition 4

Soit E un espace vectoriel de dimension finie ou infinie. Un sous-espace H de E est appelé hyperplan ssi H admet une droite comme supplémentaire.

Proposition 2

Les hyperplan de E de dimension n > 0 sont exactement les sous-espaces de dimension n - 1.

I.4 Sommes directes d'espaces vectoriels

Définition 5

Soit E un \mathbb{K} -espace vectoriel et $F_1 \dots F_p$ des sous espaces de E.

- 1. La somme des espaces $(F_i)_{i \in [\![1,p]\!]}$ est $\sum_{i=1}^p F_i = \{u_1 + \dots + u_p | u_1 \in F_1 \text{ et } u_2 \in F_2 \text{ et } \dots \text{ et } u_p \in F_p\}$. C'est le sous espace de E engendré par les F_i
- 2. On dit que la somme $F = \sum_{i=1}^{p} F_i$ est une somme **directe** et on note $F = \bigoplus_{i=1}^{p} F_i$ ssi tout vecteur $u \in F$ s'écrit de manière **unique** sous la forme $u = u_1 + \cdots + u_p$ avec $\forall i \in [1, p] u_i \in F_i$.

La somme et la somme directe sont associatives, ce qui permet de justifier a posteriori l'utilisation de \sum et \bigoplus

Théorème 3

Soient F_1, \ldots, F_p des sous espaces de E. La somme $\sum_{i=1}^p F_i$ est directe ssi

$$\forall (u_1, \dots, u_n) \in \prod_{i=1}^p F_i \ u_1 + \dots + u_p = 0_E \iff u_1 = u_2 = \dots = u_p = 0_E.$$

Ainsi il suffit de vérifier que le vecteur nul possède une unique écriture sous forme de somme.

Définition-Proposition 1 (Théorème de la base adaptée)

Soient F_1, \ldots, F_p des sous espaces de E, de dimensions finies. Notons $F = \sum_{i=1}^p F_i$.

 $F = \bigoplus_{i=1}^{p} F_i$ ssi la concaténation de bases des F_i est une base de F.

Une telle base de F est dite **adaptée** à la somme directe.

II Applications linéaires

II.1 Propriétés générales

Définition 6

Soient E, F deux \mathbb{K} -espaces vectoriels et $f: E \to F$. On dit que f est linéaire ssi

$$\forall \alpha, \beta \in \mathbb{K} \forall x, y \in E \ f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

On a alors $f(0_E) = 0_F$.

Si $F = \mathbb{K}$ on dit que f est une **forme linéaire**. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E, F)$.

Proposition 3

- 1. $\mathcal{L}(E, F)$ est un \mathbb{K} -espace vectoriel (de dimension $\dim(E) \times \dim(F)$ quand E, F sont de dimensions finies).
- 2. Quand elle existe, la composée de deux applications linéaire est linéaire.
- 3. Quand elle existe, la bijection réciproque d'une application linéaire est linéaire.

Définition 7

Soit $f \in \mathcal{L}(E, F)$.

- 1. Son noyau est $\ker(f) = f^{-1}(\{0\}) = \{x \in E | f(x) = 0_F\}.$
- 2. Son image est $Im(f) = f(E) = \{y \in F | \exists x \in E \ y = f(x)\}.$

Proposition 4

Soient $f \in \mathcal{L}(E, F)$, G un sous-espace de E et H un sous-espace de F.

Alors f(G) et $f^{-1}(H)$ sont des sous-espaces de F et E respectivement. En particulier $\ker(f)$ est un sous-espace de E et $\operatorname{Im}(f)$ est un sous-espace de F.

II.2 Applications linéaires et dimension

Proposition 5 (Théorème d'isomorphisme)

Soit $f \in \mathcal{L}(E, F)$.

Soit H un supplémentaire de $\ker(f)$ dans E. $f_{|H}:$ $\left\{\begin{array}{ccc} H & \to & \mathrm{Im}(f) \\ x & \mapsto & f(x) \end{array}\right.$ est un isomorphisme.

Théorème 4 (Théorème du rang)

Soit $f \in \mathcal{L}(E, F)$ et supposons E de dimension finie. Alors

$$\dim(E) = \dim(\ker(f)) + \operatorname{rg}(f)$$

Corollaire 3

Soit E, F des espaces de **même** dimension et $f \in \mathcal{L}(E, F)$.

f est bijective $\iff f$ est injective $\iff f$ est surjective

Dans le cas où f est un endomorphisme, les dimensions de E et F sont évidemment égales et ce résultat s'applique.

Corollaire 4

Soit $f \in \mathcal{L}(E)$ où E est de dimension finie.

$$f \in GL(E) \iff \exists g \in \mathcal{L}(E) \ f \circ g = Id_E \iff \exists g \in \mathcal{L}(E) \ g \circ f = Id_E$$

II.3 Espaces stables

Définition 8

Soit $f \in \mathcal{L}(E)$ et F un sous-espace de E. On dit que F est stable par f ssi $f(F) \subset F$.

Théorème 5

Soit F un sous-espace de E, \mathcal{B}_F une base de F que l'on complète en une base \mathcal{B} de E. On note $n = \dim(E)$ et $p = \dim(F)$

F est stable par f ssi $\operatorname{Mat}_B(f)$ est de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où

- $A \in M_p(\mathbb{K})$ (et on a alors $A = \operatorname{Mat}_{\mathcal{B}_F}(f_{|F})$)
- $-B \in M_{p,n-p}(\mathbb{K})$
- $-C \in M_{n-p}(\mathbb{K})$
- 0 représente la matrice nulle de $\mathcal{M}_{n-p,p}$

III Endomorphismes particuliers

III.1 Homothéties

Définition 9

Soit E un \mathbb{K} -espace vectoriel. Soit $\lambda \in \mathbb{K}$. L'homothétie de rapport λ est l'application linéaire $\left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & \lambda x \end{array} \right.$

III.2 Projecteurs, symétries

Définition 10

Soit E un K-espace vectoriel. Soient également F,G deux sous-espaces de E, supplémentaires dans E. Tout $x \in E$ s'écrit donc de manière unique comme $x_F + x_G$ avec $x_F \in F$ et $x_G \in G$. L'application $p: \begin{cases} E \to E \\ x \mapsto x_F \end{cases}$ est appelé projecteur sur F parallèlement à G (ou de direction G).

L'application $s: \begin{cases} E \to E \\ x \mapsto x_F - x_G \end{cases}$ est appelé symétrie par rapport à F parallèlement à G (ou de direction G).

Théorème 6

Soit E un $\mathbb{K}\text{-espace}$ vectoriel. Soient également F,G deux sous-espaces de E, supplémentaires dans E

- 1. Soit p le projecteur sur F de direction G. On a alors :
 - $-p \in \mathcal{L}(E)$
 - $-p^2 = p$

- $\ker p = G$ $\operatorname{Im} p = F = \ker(Id_E p)$
- 2. Réciproquement si $f \in \mathcal{L}(E)$ vérifie $f^2 = f$ alors f est le projecteur sur Im(f) = ker(f Id) dans la direction ker(f) (et on a donc $\text{ker}(f) \oplus \text{Im}(f) = E$).

Théorème 7

Soit E un \mathbb{K} -espace vectoriel. Soient également F,G deux sous-espaces de E, supplémentaires dans E

- 1. Soit s la symétrie par rapport à F dans la direction G. Alors :
 - $-s \in GL(E)$ et $s^2 = Id_E$ ie. $s = s^{-1}$
 - $F = \ker(s Id_E) = \{x \in E | s(x) = x\}$
 - $G = \ker(s + Id) = \{x \in E | s(x) = -x\}$
- 2. Réciproquement, soit $f \in \mathcal{L}(E)$. Si $f^2 = Id_E$ alors f est la symétrie par rapport à $\ker(f Id_E)$ parallèlement à $\ker(f + Id_E)$ qui sont donc supplémentaires dans E.

III.3 Projection et espaces en somme directe

Définition 11

Soient $F_1, \ldots F_p$ des sous-espaces de E vérifiant $E = \bigoplus_{i=1}^p F_i$. Pour $x \in E$, on pose $x = x_1 + \cdots + x_p$ l'unique décomposition en somme telle que $\forall i \in [1, p] x_i \in F_i$.

Le projeté du vecteur x sur F_j parallèlement à $\bigoplus_{\substack{i=1\\i\neq j}}^p F_i$ est le vecteur x_j . Le projeteur

associé est $p_j: x \mapsto x_j$.

Proposition 6

Avec les notations de la définition précédente

- 1. $\forall (k, l) \in [1, p]^2 \ k \neq l \Rightarrow p_k \circ p_l = 0$
- $2. \sum_{j=1}^{p} p_j = Id_E.$