Devoir surveillé n°5

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer le devoir.

Exercice 1 (Cours)

- 1. Donner un développement limité à l'ordre 2 en 0 de $\sqrt{1 + \ln(1+x)}$.
- 2. Est-ce que la matrice $\begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ -1 & 3 & -7 \end{pmatrix}$ est inversible?
- 3. Donner une équation de la droite du plan $\binom{1}{0}$ + Vect $\binom{-1}{1}$.
- 4. Sur un même schéma, tracer les courbes représentatives de $x \mapsto x^2, x \mapsto x^3, x \mapsto \frac{1}{x^2}, x \mapsto \frac{1}{x^3}$ avec une légende lisible.

Exercice 2

On considère dans cet exercice la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R}_+^* \\ x & \mapsto & \frac{1}{z} \end{array} \right.$

- 1. Donner sans justification un tableau de variations complet de f. Tracer la courbe représentative ainsi que la tangente en 1.
- 2. Montrer que f est une bijection et qu'elle est sa propre réciproque.
- 3. Que peut-on déduire sur la courbe représentative de f?
- 4. Calculer une équation de T_2 , la tangente à la courbe de f en au point d'abscisse 2 ainsi qu'une équation de $T_{\frac{1}{2}}$, la tangente en $\frac{1}{2}$.
- 5. Calculer les coordonnées du point d'intersection de ces deux droites.
- 6. Soit a > 0.
 - (a) Donner une équation de T_a la tangente à la courbe de f en a, sous forme d'équation de droite du plan.
 - (b) En déduire une équation de $T_{\underline{1}}$.
 - (c) A quelle(s) condition(s) sur a les droites T_a et $T_{\frac{1}{a}}$ se coupent en un point?
 - (d) Déterminer l'intersection des droites T_a et $T_{\frac{1}{a}}$ quand elles se coupent en un point. On le note M_a et on donnera les coordonnées de M_a .

On pose
$$M_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

- 7. On pose $g: \left\{ \begin{array}{ccc} [1,+\infty[& \to & \mathbb{R} \\ x & \mapsto & \frac{2x}{x^2+1} \end{array} \right.$
 - (a) Calculer l'ensemble image de g (rappel : il s'agit de l'ensemble des valeurs que prend la fonction g).
 - (b) On pose $E = \{M_a | a \in \mathbb{R}_+\}$. Montrer que $E = \{M_a | a \in [1, +\infty[\} = \{M_a | a \in [0, 1]\}\}$.
 - (c) Montrer que E est le segment semi-ouvert]OA] où $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 8. Expliquer rapidement (une justification précise n'est pas attendue) pourquoi les tangentes T_a et T_{\perp} se coupent forcément sur la droite d'équation y = x sans utiliser les coordonnées de M_a .

Exercice 3 On considère les matrices $A = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 3 \end{pmatrix}, P = \begin{pmatrix} -1 & -2 & 2 \\ -1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

le commutant de T.

- 1. Trouver deux matrices de C(A).
- 2. Montrer que A est inversible puis que $A^{-1} \in C(A)$. On ne calculera pas la matrice A^{-1} .
- 3. Etude de la "structure" de C(A).
 - (a) Montrer que C(A) est stable par combinaison linéaire, c'est à dire que si $M_1, M_2 \in C(A)$ et $\lambda_1, \lambda_2 \in \mathbb{R}$ alors $\lambda_1 M_1 + \lambda_2 M_2 \in C(A)$.
 - (b) Rappeler la définition de $Vect(I_3, A, A^{-1})$ et montrer que $Vect(I_3, A, A^{-1}) \subset C(A)$.

- (c) Montrer qu'on a également $Vect(I_3, A, A^2) \subset C(A)$.
- (d) Montrer que C(A) est stable par produit matriciel, c'est à dire qu'un produit d'éléments de C(A) est encore dans C(A).
- 4. Comparer AP et PT.
- 5. Montrer que P est inversible et calculer P^{-1} .
- 6. Soit $M \in \mathcal{M}_3(\mathbb{R})$. Montrer l'équivalence : $M \in C(A) \iff P^{-1}MP \in C(T)$.
- 7. Montrer que les éléments de C(T) sont exactement les matrices de la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & e & f \\ 0 & 0 & e \end{pmatrix}$ où a, e, f sont réels.
- 8. En déduire l'ensemble C(A) comme Vect(J, K, L) où J, K, L sont 3 matrices (fixes) que l'on précisera.
- 9. Prouver que si $\alpha J + \beta K + \gamma L = 0$ alors on a nécessairement $\alpha = \beta = \gamma = 0$. (On dit alors que J, K, L forment une famille libre, ou encore sont non coplanaires, d'après le chapitre de géométrie de l'espace.)
- 10. Justifier que pour tout entier $n \in \mathbb{N}$ il existe un triplet $(\alpha_n, \beta_n, \gamma_n) \in \mathbb{R}^3$ tel que $A^n = \alpha_n J + \beta_n K + \gamma_n L$
- 11. Prouver l'unicité des coefficients obtenus dans la question précédente.
- 12. Que dire du cas $n \in \mathbb{Z}$, n < 0?

Exercice 4

Soit $\alpha \in]0, +\infty[$.

On pose
$$f_{\alpha}: \left\{ \begin{array}{ccc} \mathbb{R}_{+}^{*} & \to & \mathbb{R} \\ x & \mapsto & \frac{\ln(x)}{x^{\alpha}} \end{array} \right.$$
 et $g_{\alpha}: \left\{ \begin{array}{ccc} \mathbb{R}_{+}^{*} & \to & \mathbb{R} \\ x & \mapsto & \ln(x) - x^{\alpha} \end{array} \right.$ Le but de cet exercice est d'étudier les fonctions f_{α} et g_{α} dans le but d'étudier les valeurs et positions relatives des

fonction ln et puissance α

Partie I: valeurs relatives

- 1. Rappeler la limite de f_{α} en $+\infty$ et calculer sa limite en 0.
- 2. Montrer que f_{α} est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 3. Etudier les variations de f_{α} .
- 4. Montrer que f_{α} possède un maximum et calculer la valeur de ce maximum, que l'on note m_{α} .
- 5. Etudier les limites de m_{α} quand $\alpha \to 0$ et quand $\alpha \to +\infty$.
- 6. Pour quelles valeurs de α a-t-on au moins une fois $\ln(x) \ge 1000x^{\alpha}$? (c'est à dire pour au moins une valeur de x > 0).
- 7. Cas particulier : $\alpha = \frac{1}{3}$
 - (a) Donner un développement limité à l'ordre 2 de $f_{\frac{1}{2}}$ au voisinage de 1.
 - (b) Quels renseignements graphique en tirer?
 - (c) Tracer la courbe représentative de $f_{\frac{1}{2}}$. On prendra $e^1 \approx 3$. Le repère pourra ne par être orthonormé à condition d'être orthogonal.

Partie II: positions relatives

- 1. Quelles est la classe de la fonction g_{α} sur \mathbb{R}_{+}^{*} ?
- 2. Etudier les limites de g_{α} en 0 et $+\infty$.
- 3. Donner un tableau de variations complet de g_{α} .
- 4. Montrer que g_{α} possède un maximum noté M_{α} .
- 5. Pour quelle(s) valeur(s) de α a-t-on $M_{\alpha}=0$? Quelle est l'interprétation en terme de positions relatives des courbes représentatives des fonction ln et $x \mapsto x^{\alpha}$?
- 6. Etudier les variations et le signe de $h: x \mapsto -\frac{\ln(x)}{x} \frac{1}{x}$ définie sur un ensemble à préciser.
- 7. Donner les limites de h en 0 et $+\infty$.
- 8. Tracer la courbe représentative de h.
- 9. Quelle est la fonction puissance dont la courbe représentative s'approche le moins de la courbe de ln ? On mesure la distance par la valeur absolue de la différence des ordonnées pour une même abscisse.

Exercice 5

Soient $a, b \in \mathbb{R}$ tels que $(a, b) \neq (0, 0)$. On pose \mathcal{D} la droite d'équation ax + by = 0.

- 1. Donner un vecteur normal \vec{n} et un vecteur normal \vec{u} de \mathcal{D} qui soient de norme 1.
- 2. Soit $M: \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ un point et H son projeté orthogonal sur \mathcal{D} . Montrer que $\overrightarrow{OM}.\vec{u} = \overrightarrow{OH}.\vec{u}$ et calculer de manière similaire $\det(\overrightarrow{OM}, \vec{u})$.
- 3. Montrer qu'il existe $c, d \in \mathbb{R}$ tels que $\overrightarrow{OM} = c\vec{u} + d\vec{n}$.
- 4. Exprimer c,d en fonction de $\overrightarrow{OM}, \vec{u}, \vec{n}$ et trouver une autre expression de $c\vec{u}$ et $d\vec{n}$.
- 5. Donner les coordonnées de H.
- 6. En considérant M et H comme des colonnes, trouver une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telles que H = AM. Que remarquer sur la matrice A?
- 7. Montrer que $S=2A-I_2$ vérifie $S\in GL_2(\mathbb{R})$ et $S^{-1}={}^tS=S.$