Devoir surveillé n°3

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Exercice 1 (Questions de cours)

1. On considère la courbe paramétrée $f: \left\{ \begin{array}{ccc}]1,+\infty[& \to & \mathbb{R}^2 \\ & t & \mapsto & \left(\frac{t^2}{t-1} \right) = \left(x(t) \right) \\ y(t) \end{array} \right.$

On donne de plus le tableau de variations des fonctions x et y.

t	1 2 +	$-\infty$
x'(t)	- 0 +	
	+∞ +	-∞
x(t)	4	
	$+\infty$	
y(t)	*	0
y'(t)	_	

- (a) Décrire la tangente au point de paramètre t=2.
- (b) Étudier la branche infinie lorsque $t \to +\infty$.
- (c) Étudier la branche infinie lorsque $t \to 1^+$. Rappelons que lorsque qu'une expression polynomiale s'annule en un point, on peut la factoriser (penser aux racines d'un polynôme).
- 2. Soit E un \mathbb{K} -espace vectoriel. Soit $f \in \mathcal{L}(E)$ un endomorphisme. Soit $\lambda \in \mathbb{K}$. Donner la définition de : λ est une valeur propre de f.

Exercice 2

On considère la courbe Γ de représentation paramétrique

$$\begin{cases} x = 1 + \cos(\theta) \\ y = 1 + \sin(\theta) \end{cases}, \theta \in [0, 2\pi]$$

On note $M(\theta)$ le point de Γ de paramètre θ , $(\vec{T}(\theta), \vec{N}(\theta))$ et $\gamma(\theta)$ la base de Frénet et la courbure de Γ au point $M(\theta)$. Enfin, s désigne l'abscisse curviligne de Γ qui s'annule en 0.

- 1. Reconnaître la courbe Γ . On sera le plus précis possible.
- 2. Des questions de cours, pour préparer la suite.
 - (a) Donner les deux définitions (ou caractérisation) de la développée d'une courbe régulière.
 - (b) Donner la définition (pas la méthode de calcul) de l'enveloppe d'une famille de droites $(\mathcal{D}_t)_{t\in\mathbb{R}}$.
 - (c) Donner les deux formules de Frénet.
- 3. On considère un réel k et pour tout $\theta \in [0, 2\pi]$, on note $P_k(\theta)$ le point défini par

$$\overrightarrow{M(\theta)P_k(\theta)} = (k - s(\theta))\overrightarrow{T}(\theta)$$

et Λ_k l'ensemble des points $P_k(\theta)$ pour $\theta \in [0, 2\pi]$.

- (a) Calculer les vecteurs $\vec{T}(\theta)$, $\vec{N}(\theta)$ et montrer que $s(\theta) = \theta$ pour tout $\theta \in [0, 2\pi]$. Quelle est l'origine du repère de Frénet?
- (b) Déterminer une représentation paramétrique de Λ_k .

- (c) Déterminer les points non réguliers de Λ_k . Où sont-ils situés?
- (d) Déterminer la développée de Λ_k éventuellement privé de ses points réguliers.
- 4. Dans cette question, nous allons vérifier que toute courbe Λ dont la développée est incluse dans Γ est une courbe Λ_k .

Soit $\theta \mapsto P(\theta), \theta \in [0, 2\pi]$ un paramétrage de Λ . On suppose que ce paramétrage est de classe \mathcal{C}^2 sur l'intervalle $[0, 2\pi]$ et que la courbe Λ est birégulière.

On note $(\vec{T_P}(\theta), \vec{N_P}(\theta)), s_P(\theta)$ et $\gamma_P(\theta)$ la base de Frénet, une abscisse curviligne et la courbure de Λ au point $P(\theta)$. Enfin, on considère que $M(\theta)$ est le centre de courbure de Λ au point $P(\theta)$.

- (a) Sur la copie, faire une figure illustrant la situation : placer les points $M(\theta), P(\theta)$, les vecteurs $\vec{T}(\theta), \vec{N}(\theta), \vec{T_P}(\theta), \vec{N_P}(\theta)$ ainsi qu'une allure possible pour les courbes Γ et Λ au voisinage des points $M(\theta)$ et $P(\theta)$.
- (b) Justifier qu'il existe une fonction λ , dont on admettra qu'elle est de classe \mathcal{C}^1 sur $[0,2\pi]$ telle que

$$\forall \theta \in [0, 2\pi] \ \overrightarrow{M(\theta)P(\theta)} = \lambda(\theta)\overrightarrow{T}(\theta)$$

- (c) En déduire que : $\frac{d\overrightarrow{OP}}{d\theta} = \frac{d\overrightarrow{OM}}{d\theta} + \frac{d\lambda}{d\theta}\overrightarrow{T} + \lambda \frac{d\overrightarrow{T}}{d\theta}$ puis que : $\frac{ds_P}{d\theta}\overrightarrow{T_P} = \frac{ds}{d\theta}\overrightarrow{T} + \frac{d\lambda}{d\theta}\overrightarrow{T} + \lambda \gamma \frac{ds}{d\theta}\overrightarrow{N}$.
- (d) Justifier que $\frac{ds}{d\theta} + \frac{d\lambda}{d\theta} = 0$ et en déduire λ .
- (e) Conclure.

Exercice 3

On considère les fonctions suivantes, définies sur $\mathbb R$:

$$g: x \mapsto e^{x^2}, \ G: x \mapsto \int_0^x e^{t^2} dt, \ h: x \mapsto e^{-x^2}$$

et enfin

$$F: x \mapsto e^{-x^2} \int_0^x e^{t^2} \mathrm{d}t$$

- 1. Montrer rapidement que G est dérivable sur $\mathbb R$ et que sa dérivée est g.
- 2. Montrer que la fonction F est dérivable sur \mathbb{R} .
- 3. Montrer que g, h sont développables en séries entières sur $\mathbb R$ et donner leurs développements.
- 4. En appliquant des théorèmes de cours uniquement, et en évitant des calculs trop compliqués, montrer que la fonction F est développable en série entière sur \mathbb{R} (on ne demande pas ici de donner le développement de F).
- 5. Montrer que la fonction F est solution, sur \mathbb{R} , de l'équation différentielle :

$$y'(x) = -2xy(x) + 1$$

- 6. En recherchant le développement en série entière de F sous la forme $\sum_{n=0}^{+\infty} a_n x^n$ où les coefficients a_n sont à trouver, montrer que $a_1 = 1$ et $\forall n \in \mathbb{N} \setminus \{0\} a_{n+1} = \frac{-2}{n+1} a_{n-1}$.
- 7. Que vaut a_0 ?
- 8. Pour tout entier naturel p, exprimer a_{2p} et a_{2p+1} en fonction de p.
- 9. En déduire le développement en série entière de F.
- 10. Étudier la convergence de la série de terme général

$$\frac{(-1)^n 4^n n!}{(2n+1)!}$$

11. Donner le développement en série entière de la fonction qui, à tout réel x, associe

$$\int_0^x e^{t^2} dt$$

puis déduire de ce qui précède que, pour tout entier naturel n:

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} = \frac{4^n}{(2n+1)\binom{2n}{2}}$$

Exercice 4

Soit n entier naturel, $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n.

On dit qu'un endomorphisme non nul u de E est nilpotent s'il existe un entier k tel que u^k soit l'endomorphisme nul.

Si u est un endomorphisme de E nilpotent, on appelle ordre de nilpotence de u l'entier $r \ge 1$ tel que u^r soit l'endomorphisme nul et u^{r-1} ne soit pas nul.

Une matrice $A \in \mathfrak{M}_n(\mathbb{K})$ est dite *nilpotente* si l'endomorphisme de \mathbb{K}^n qui lui est canoniquement associé l'est.

Partie I

Les questions de cette partie sont indépendantes.

- 1. Soit u un endomorphisme de E non nul. Montrer que u est nilpotent d'indice de nilpotence 2 si et seulement si Im $u \subset \ker u$.
- 2. On suppose dans cette question que n=2. Soient \mathcal{B} une base de E, f et g les endomorphismes de E de matrices respectives dans \mathcal{B} :

$$A=\mathrm{Mat}_{\mathcal{B}}(f)=\begin{pmatrix}0&1\\0&0\end{pmatrix}\qquad\text{et}\qquad B=\mathrm{Mat}_{\mathcal{B}}(g)=\begin{pmatrix}0&0\\1&0\end{pmatrix}.$$

- (a) Montrer que f et g sont nilpotents et déterminer leur indice de nilpotence.
- (b) Soit $m \in \mathbb{N}$, déterminer l'expression de $(A+B)^m$. On distinguera les cas m pairs, des cas m impairs.
- (c) L'endomorphisme f + g est-il nilpotent?
- (d) L'endomorphisme $f \circ g$ est-il nilpotent?
- 3. On suppose maintenant que n est un entier quelconque non nul. Soit f et g deux **nouveaux** endomorphismes nilpotents de E d'indice de nilpotence respectif p et q.

On suppose que les endomorphismes f et g commutent : $f \circ g = g \circ f$.

- (a) Montrer que $f \circ g$ est nilpotent, d'indice de nilpotence r avec $r \leq \min(p, q)$.
- (b) Montrer que f + g est nilpotent d'indice de nilpotence $k \leq p + q$.

Partie II

Dans cette partie, on désigne par u un endomorphisme non nul de E, nilpotent, d'indice de nilpotence $r \geq 1$.

- 1. Montrer que u n'est pas inversible.
- 2. Justifier l'existence d'un vecteur $x \in E$ tel que $u^{r-1}(x) \neq 0$.
- 3. Montrer que la famille $(x, u(x), u^2(x), \dots, u^{r-1}(x))$ est une famille libre de E. En déduire que r < n.
- 4. On note F l'espace vectoriel engendré par la famille $(x, u(x), u^2(x), \dots, u^{r-1}(x))$:

$$F = \text{Vect}(x, u(x), u^{2}(x), \dots, u^{r-1}(x))$$

- (a) Quelle est la dimension de F?
- (b) Montrer que F est stable par u.
- (c) On définit alors l'endomorphisme v de F, restriction de u à F:

$$v: \left\{ \begin{array}{ccc} F & \longrightarrow & F \\ t & \longmapsto & u(t). \end{array} \right.$$

Vérifier que v est nilpotent, d'indice de nilpotence r. Puis déterminer une base \mathcal{B} de F dans laquelle la matrice de v est :

$$\operatorname{Mat}_{\mathcal{B}}(v) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

- (d) Quel est le rang de v? Déterminer une base de $\ker v$, puis de $\operatorname{Im} v$. En déduire que $\ker v \subset \operatorname{Im} v$.
- (e) Déterminer le polynôme caractéristique de v, défini par la fonction polynomiale $\chi_v(t) = \det(tId_F v)$
- 5. On suppose dans cette question que n=3. Soit $\mathcal{B}=(e_1,e_2,e_3)$ une base de E et soit u l'endomorphisme dont la matrice dans la base \mathcal{B} est :

$$N = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 1/2 & -1/2 & 0 \end{pmatrix}.$$

Déterminer une base de E dans la quelle la matrice de u est de la forme :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$