Table des matières

I Intégrales convergentes II Preuves de convergence III Exemples importants Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Intégrales convergentes

Le cadre d'étude change: on considère toujours des fonctions continues, plus seulement sur des segments mais des intervalles quelconques.

Intégrales impropres

I.1.1 Définition

Soient $a < b \le +\infty$ et $f \in \mathcal{C}([a, b], \mathbb{R})$ une fonction **continue**.

Si $\lim_{x\to b} \int_a^x f(t) dt$ existe et est finie on la note $\int_a^b f(t) dt$ et on dit que cette intégrale est une intégrale (impropre) convergente. Dans le cas contraire, l'intégrale est dite divergente.

Remarque I.1.2

On ne se préoccupe pas de la valeur de a (la borne inférieure) du moment que l'intervalle de continuité est **fermé** en cette borne.

Par exemple pour f continue sur \mathbb{R} , $\int_{0}^{+\infty} f$ est convergente ssi $\int_{0}^{+\infty} f$ est convergente.

Convergence + calcul de la valeur de l'intégrale $\int_{0}^{+\infty} e^{-t} dt dt$.

I.1.4 Définition

Soient $|-\infty \leq a| < b$ et $f \in \mathcal{C}(]a,b],\mathbb{R})$. La borne ouverte est a.

Si $\lim_{x\to a} \int_{x}^{b} f(t) dt$ existe et est finie on la note $\int_{a}^{b} f(t) dt$ et on dit que cette intégrale est une intégrale (imprope) convergente.

3 I.1.5 Exemple (A savoir refaire)

Montrons que $\int_{0}^{1} \ln(t) dt$ converge et donnons sa valeur.

— $\ln \in \mathcal{C}(]0,1],\mathbb{R})$ (ie. on fait une étude de convergence en 0).

- Soit
$$x > 0$$
. $\int_{x}^{1} \ln(t) dt = -1 - x \ln(x) + x \underset{x \to 0}{\to} -1$

— Conclusion : $\int_{0}^{1} \ln(t) dt$ est une intégrale convergente et sa valeur est -1.

I.1.6 Définition-Proposition

Soient $a, b \in \mathbb{R}$ avec a < b (on peut avoir $a = -\infty$ et / ou $b = +\infty$). Soit $f \in \mathcal{C}([a, b[, \mathbb{R})]$.

S'il existe un $c \in]a,b[$ tel que $\int_a^c f$ et $\int_c^b f$ sont des intégrales convergentes alors on dit

que $\int f$ converge.

Dans ce cas on a $\forall c' \in]a, b[\int_a^{c'} f + \int_b^b f = \int_a^c f + \int_c^b f$ et on note cette valeur $\int_a^b f$.

Preuve.

On a, par limite d'une somme (une intégrale convergente et une constante), $\int_{c}^{c} f =$ $\int_a^{c'} f + \int_{c'}^c f.$ De même $\int_c^b f = \int_c^{c'} f + \int_{c'}^b f.$ Finalement, l'égalité demandée est

I.1.7 Interprétation graphique

On peut continuer à voir une intégrale impropre comme une aire, mais cette fois comme l'aire limite d'un partie non nécessairement bornée.

I.1.8 Exemple

Montrer la convergence et calculer la valeur de $\int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$.

I.1.9 Coin-culture

L'intégrale suivante est d'importance fondamentale en probabilité : $\int_{-\infty}^{+\infty} \exp(-t^2) dt =$ $\sqrt{\pi}$.

I.1.10 Définition (Notation)

Soit I un intervalle dont les bornes sont a < b. Ces bornes peuvent être ouvertes ou fermées. On note $\int_{T} f$ l'intégrale (classique ou impropre) $\int_{T} f$.

Cette notation permet de ne pas préciser à priori la nature fermée ou ouverte des bornes.

Prolongement par continuité

I.2.1 Proposition

On se place dans le cas $f \in \mathcal{C}([a, b], \mathbb{R})$ et $b \in \mathbb{R}$ (ce n'est pas $+\infty$). Si on peut prolonger f par continuité en b (on note \tilde{f} le prolongement), alors l'intégrale $\int\limits_{0}^{b}f$ converge et sa valeur est $\int_{0}^{t} \tilde{f}(t)dt$ (qui est une intégrale sur un segment).

Le résultat s'applique encore lorsque c'est la borne inférieure qui est ouverte, voire lorsque les deux bornes sont ouvertes, si on peut prolonger à chaque borne.

Soit $F_1: x \mapsto \int\limits_a^x f(t) \mathrm{d}t$ la primitive de f sur [a,b[qui s'annule en a et $F_2: x \mapsto$ $\int \tilde{f}(t)dt$ la primitive de \tilde{f} sur [a,b] qui s'annule en a, alors $\forall x \in [a,b]$ $F_1(x) = F_2(x)$ et F_2 est continue sur [a,b]. F_2 est donc le prolongement par continuité de F_1 et on a bien $F_1(x) \underset{x \to b}{\to} F_2(b) = \int_{-\infty}^{b} \tilde{f}$.

I.2.2 Exemple

Montrer que $\int_0^1 \frac{t-1}{\ln(t)} dt$ converge. Posons $f: t \mapsto \frac{t-1}{\ln(t)}$ qui est continue sur]0,1[(et donc on a deux études de convergence à faire.)

— Etude en 0. On a $t-1 \underset{0}{\rightarrow} -1$ et $\ln(t) \underset{0}{\rightarrow} -\infty$ donc $f(t) \underset{0}{\rightarrow} 0$ et on peut prolonger fpar continuité en 0.

— Etude en 1. On a $\ln(t) \sim t - 1$ car $\ln(1+u) \sim u$. Ainsi $f(t) \to 1$ et on peut prolonger f par continuité en 1.

Finalement, $\int_0^1 f$ converge.

I.3 Intégrales de référence

Dans cette partie, nous allons lister des intégrales notoirement convergentes. Les résultat ainsi que les preuves sont à connaître.

I.3.1 Proposition

 $\int \ln(t)dt$ converge.

Preuve.

Voir plus haut

I.3.2 Proposition

Soit $\alpha \in \mathbb{R}$. $\int_{0}^{+\infty} e^{-\alpha t} dt$ converge ssi $\alpha > 0$.

Dans le cas de convergence, $\int_{-\infty}^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}$.

Preuve.

Le cas $\alpha = 0$ est trivial.

Dans le cas $\alpha \neq 0$, on a, pour x > 0,

$$\int_0^x e^{-\alpha t} dt = \frac{1}{\alpha} - \frac{e^{-\alpha x}}{\alpha}$$

Or $e^{-\alpha x} \underset{x \to +\infty}{\to} 0$ lorsque $\alpha > 0$ et $e^{-\alpha x} \underset{x \to +\infty}{\to} +\infty$ lorsque $\alpha < 0$.

On obtient bien une limite finie ssi $\alpha > 0$ (et on obtient $+\infty$ lorsque $\alpha \leq 0$)

I.3.3 Théorème (Intégrales de Riemann)

Soit $\alpha \in \mathbb{R}$.

- 1. $\int_{0}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge ssi $\alpha > 1$.
- 2. $\int_{0}^{1} \frac{1}{t^{\alpha}} dt$ converge ssi $\alpha < 1$.
- 3. $\int_0^1 \frac{1}{t} dt$ et $\int_1^{+\infty} \frac{1}{t} dt$ sont deux intégrales **divergentes**

1. Soit x > 1. $\int_{1}^{x} \frac{1}{t^{\alpha}} dt = \left[\frac{t^{-\alpha+1}}{(1-\alpha)}\right]_{1}^{x} \text{ si } \alpha \neq 1 \text{ et } [\ln(t)]_{1}^{x} \text{ si } \alpha = 1$.

Dans le cas $\alpha = 1$ on a donc une intégrale divergente.

Pour $\alpha \neq 1$, $x^{-\alpha+1} \to \begin{cases} 0 \text{ si } \alpha > 1 \\ +\infty \text{ si } \alpha < 1 \end{cases}$. On retrouve bien le résultat an-

noncé. Remarque : si $\alpha < 1$ alors $\frac{1}{t} = o_{+\infty}(\frac{1}{t^{\alpha}})$ et le théorème de comparaison nous assure de la divergence de l'intégrale de Riemann concernée.

2. Soit $x \in]0,1[$. Le même calcul de primitive vaut encore. Comme $\ln(x) \to -\infty$, $\int_0^1 \frac{1}{t} dt$ diverge et le théorème de comparaison nous assure que $\int_0^1 \frac{1}{t^{\alpha}} dt$ diverge dès que $\alpha \geqslant 1$ (en 0, les comparaisons de puissances sont inverses de celles en

Cette fois, $x^{-\alpha+1} \to \begin{cases} 0 \text{ si } \alpha < 1 \\ +\infty \text{ si } \alpha > 1 \end{cases}$ et on retrouve le résultat de convergence.

3. Conséquence directe des deux points précédents.

Adaptation des outils

I.4.1 Théorème

Soient $f \in \mathcal{C}([a, b[, \mathbb{R})])$ et $\varphi : [\alpha, \beta[\rightarrow]a, b[]$ une bijection de classe \mathcal{C}^1 strictement croissante.

 $\int\limits_a^b f(t)\mathrm{d}t \ \text{et} \ \int\limits_\alpha^\beta f(\varphi(u))\varphi'(u)\mathrm{d}u \ \text{sont de même nature et égales quand elles}$

Preuve.

Ainsi les intégrales convergent simultanément en a et α .

Cas d'un changement décroissant

Si φ est supposée décroissante, on a alors $\int_a^b f(t) dt = \int_\beta^\alpha f(\varphi(u)) \varphi'(u) du$

I.4.3 Exemple

Etudier la convergence de $\int_0^1 \frac{1}{1-t} dt$. La fonction $t \mapsto \frac{1}{1-t}$ est continue sur [0,1[.

Par changement de variable bijectif u = 1 - t ie t = 1 - u on trouve une intégrale de Riemann divergente.

I.4.4 Exemple Convergence et valeur de $I=\int\limits_0^1\frac{1}{\sqrt{t(1-t)}}\mathrm{d}t.\ t\mapsto\frac{1}{\sqrt{t(1-t)}}$ est continue sur]0,1[par composition et inverse.

Posons $u = \sqrt{t}$ pour $t \in]0,1[$ et donc on a $t = u^2$ et dt = 2udu. Alors $I = \int_0^1 \frac{2u}{u\sqrt{1-u^2}} du =$ $2[\arcsin(u)]_0^1 = \pi.$

I.4.5 Théorème

Soient $u, v : [a, b] \to \mathbb{R}$ des fonctions de classe \mathcal{C}^1 .

Si $\lim_{x\to b^-} u(x)v(x)$ existe et est finie alors $\int_a^b u'v$ et $\int_a^b uv'$ sont de même nature et en cas de convergence

$$\int_{a}^{b} u'v = [uv]_{a}^{b} - \int_{a}^{b} uv'$$

où on a noté $[uv]_a^b = \lim_{x \to b^-} u(x)v(x) - u(a)v(a)$.

Preuve.

Immédiat d'après le cours de sup, en passant par des intégrales sur [a, x].

I.4.6 Remarque

On peut étendre ce théorème à [a,b] et même à [a,b] (dans ce cas le crochet est la différence de deux limites).

I.4.7En pratique

On reviendra toujours à une intégrale sur un segment [a, x] pour effectuer une intégration par parties puis on fait tendre x vers b. En effet, on ne connaît pas a priori la fonction u ni la limite de uv.

I.4.8 Exemple

Montrer la convergence et calculer $I = \int_0^{+\infty} te^{-t} dt$. $t \mapsto te^{-t}$ est continue sur $[0, +\infty[$.

Posons A > 0. Alors $\int_0^A t e^{-t} dt = [-te^{-t}]_0^A + \int_0^A e^{-t} \underset{A \to +\infty}{\longrightarrow} 1$ qui est une limite finie. Ainsi I converge et vaut 1

I.4.9 Théorème

Soit I un intervalle de \mathbb{R} .

Soit $f: I \to \mathbb{R}^+$ une fonction continue, positive et telle que $\int_T f(t) dt$ converge. Si $\int_I f = 0$ alors $\forall x \in I \ f(x) = 0$.

Preuve.

Remarquons que si $x \in I$ alors il existe un segment $[a, b] \subset I$ tel que $x \in [a, b]$.

De plus, comme
$$f$$
 est positive, $0 \leqslant \int_{[a,b]} f \leqslant \int_{I} f = 0$

Or ce théorème est vrai quand I est un segment. Pour $x \in I$, il suffit d'appliquer le cours de 1ère année pour prouver que f est nulle sur un segment [a, b] qui contient x et donc f(x) = 0.

II Preuves de convergence

II.1 Fonctions intégrables

II.1.1 Définition

Soit I un intervalle et $f: I \to \mathbb{K}$ une fonction continue. On dit que f est **intégrable** sur I ssi $\int |f|$ converge.

L'ensemble des fonctions continues et intégrables définies sur l'intervalle I et à valeurs dans \mathbb{K} est noté $L^1(I,\mathbb{K})$.

II.1.2 Exemple

Etudier l'intégrabilité sur $]0, +\infty[$ de $t \mapsto \ln(t)e^{-t}$.

II.1.3 Remarque

Pour les fonction positives ou négatives, l'intégrabilité et le fait que l'intégrale converge est équivalent.

II.1.4 Proposition (Linéarité des intégrales convergentes)

Soient $f, g: [a, b] \to \mathbb{K}$ continues. Si $\int_a^b f$ et $\int_a^b g$ convergent toutes les deux alors pour tout $(\alpha, \beta) \in \mathbb{K}^2$, $\int_{-b}^{b} (\alpha f + \beta g)$ converge également et on a

$$\int_{a}^{b} (\alpha f(t) + \beta g(t)) dt = \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt$$

Preuve.

Simple retour à la définition. On remplace b par $x \in [a, b]$ pour intégrer sur un segment. La linéarité de l'intégrale s'applique alors et le théorème est une conséquence de du théorème de combinaison linéaire de limites finies.

II.1.5 Théorème

Soit $f \in \mathcal{C}(I, \mathbb{K})$. SI f est intégrable sur I ALORS $\int_I f$ converge.

Preuve.

— Cas $\mathbb{K} = \mathbb{R}$.

Notons $f_+: x \mapsto \max(f(x), 0)$ et $f_-: x \mapsto \min(f(x), 0)$ les fonctions qui valent respectivement f(x) ou 0 suivant que f(x) est positif ou négatif.

Alors $f = f_+ + f_-$ et $|f| = f_+ - f_-$. Si on suppose que f est intégrable sur I, vu que $f_+ \leq |f|$ et $-f_- \leq |f|$, les intégrales de f_+ et $-f_-$ convergent et par combinaison linéaire l'intégrale de $f_+ - (-f_-) = f$ converge.

— Cas $\mathbb{K} = \mathbb{C}$. Notons f = u + iv la forme algébrique de f. Alors $|u| \leq |f|$ et $|v| \leq$ |f|. Par comparaison de fonctions à valeurs positives, u, v sont d'intégrales convergentes sur I et donc f = u + iv aussi.

II.1.6 Exemple ∞e^{it} Montrer que $\int_{1}^{1} \frac{e^{it}}{t^2} dt$ converge.

Comparaison

II.2.1 Théorème (Comparaison)

Soient $f, g \in \mathcal{C}([a, b[, \mathbb{K})])$ des fonctions continues.

- 1. Si $|f| \leq |g|$ au voisinage de b et g est intégrable sur [a, b] alors f est intégrable sur [a, b[.
- 2. Si $f = O_b(q)$ et q est intégrable sur [a, b] alors f est intégrable sur [a, b].
- 3. Si $f = o_b(g)$ et g est intégrable sur [a, b] alors f est intégrable sur [a, b].
- 4. Si $f \sim g$ alors f est intégrable sur [a, b[ssi g est intégrable sur [a, b[

Le résultat vaut encore pour des fonctions définies sur [a,b], à condition de prouver des relations de comparaison (ou une inégalité) en a.

reuve. 1. Plaçons nous sur un intervalle [c,b[où $|f|\leqslant |g|$. Les intégrales $\int\limits_a^b |f|$ et $\int\limits_c^b |f|$ ont la même nature.

Pour $x \in [c, b]$ on a, par croissance de l'intégrale sur un segment (on intègre "dans le bon sens"), $\int_{c}^{x} |f| \le \int_{c}^{x} |g|$. Or $x \mapsto \int_{c}^{x} |g|$ est croissante et possède une limite finie, donc est toujours inférieure à cette limite.

Ainsi $x\mapsto\int\limits_{c}^{z}|f|$ est croissante $(f\geqslant0)$ et majorée donc possède une limite finie en b (la borne supérieure de son intervalle de définition). Ainsi $\int |f|$ converge (et est $\leq \int_{c}^{b} |g|$) et donc $\int_{a}^{b} |f|$ converge.

- 2. Dans le cas où $f = O_b(g)$ on a $|f| \leqslant M|g|$ au voisinage de b pour un $M \in \mathbb{R}+$ Par produit d'une limite par une constante, $\int\limits_{-b}^{b}M|g(t)|\mathrm{d}t$ converge et par la point précédent, $\int_{a}^{b} |f|$ converge.
- 3. On a dans ce cas $f = O_b(q)$
- 4. On a dans ce cas $f = O_b(q)$ et $q = O_b(f)$.

II.2.2 Négligeabilité

Si on a $f = o_b(g)$ et $\int_a^b g$ converge (avec g une fonction positive de référence) alors $\int_a^b f$ converge. Dans la pratique, on utilisera très souvent ce fait.

Exemple: $\frac{1}{t^t} = o_{+\infty}(\frac{1}{t^2})$ donc $\int_{-t^2}^{+\infty} \frac{1}{t^t} dt$ converge par comparaison de fonctions positives.

II.2.3 Divergence

On peut tout à fait appliquer les contraposées des points 1 et 2 pour prouver la divergence d'une intégrale d'une fonction positive. Par exemple, si $f = o_b(g)$ et $\int_a^b f$ diverge (avec f positive, fonction de référence), alors $\int_a^b g$ diverge (raisonnement par l'absurde).

II.2.4 $t^{\alpha}f(t)$

- 1. En 0 Pour la convergence en 0, si $t^{\frac{1}{2}}f(t) \to 0$ ou plus généralement $t^{1-\varepsilon}f(t) \to 0$ pour un $\varepsilon > 0$ fixé alors l'intégrale de f converge en 0 (si f est positive...)
- 2. En $+\infty$ si $t^2f(t)\underset{+\infty}{\to}0$ ou plus généralement $t^{1+\varepsilon}f(t)\underset{+\infty}{\to}0$ alors l'intégrale de fconverge en $+\infty$.
- 3. De manière plus générale, si on peut déterminer $\lim_{0 \text{ ou } +\infty} t^{\alpha} f(t)$ en fonction de la valeur de α alors on pourra souvent conclure sur la convergence en 0 ou en $+\infty$.

II.2.5 Application à la preuve de divergence

En a=0 comme en $a=+\infty$, si on a $tf(t)\underset{t\to a}{\to} +\infty$ on peut conclure à la divergence de l'intégrale de f. Par exemple $\int_2^{+\infty} \frac{1}{\ln(t)} dt$ diverge.

II.2.6 Exemple

Discuter suivant la valeur de $\beta \in \mathbb{R}$ la convergence de de $\int_{0}^{+\infty} t^{\beta-1}e^{-t}dt$.

On pose $f_{\beta}: t \mapsto t^{\beta-1}e^{-t}$ qui est continue sur $]0, +\infty[$ dans le cas général (pas en 0, à cause du cas $\beta-1<0$). Alors $f_{\beta}(t)=o_{+\infty}(\frac{1}{t^2})$ car $t^2f_{\beta}(t)\underset{+\infty}{\to}0$. Ainsi l'intégrale converge en $+\infty$ par comparaison de fonctions positives.

En 0, on a $f_{\beta}(t) \sim t^{\alpha-1} = \frac{1}{t^{1-\alpha}}$. L'intégrale converge ssi $\alpha > 0$ d'après le théorème précédent et par comparaison de fonctions positives.

II.2.7 Exemple

Montrer (enfin!) que $\int_{-\infty}^{+\infty} e^{-t^2} dt$ converge.

Le calcul de la valeur est un exercice classique.

Preuve.

Voici une preuve en plusieurs étapes.

- Montrons que $\forall x > -1 \, \ln(1+x) \leqslant x$ (avec égalité seulement en 0). Remarquons d'abord que $f: x \mapsto \ln(1+x)$ est dérivable sur $]-1,+\infty[$, ce qui nous permettra d'utiliser l'inégalité des accroissements finis sur [0,x] ou [x,0]. De plus sa dérivée est $f': x \mapsto \frac{1}{1+x}$ qui est décroissante sur $]-1,+\infty[$ Si x>0, on a $f'(x) \leqslant \frac{f(x)-f(0)}{x-0} \leqslant f'(0)$ ce qui donne $\frac{\ln(1+x)}{x} \leqslant 1$ qui est CQFD. Si x<0, on a $f'(1) \leqslant \frac{f(0)-f(x)}{0-x} \leqslant f'(x)$ ou encore $1 \leqslant \frac{-\ln(1+x)}{-x}$ ou encore $-x \leqslant -\ln(1+x)$ car -x>0.
- Soit $n \in \mathbb{N} \setminus \{0\}$ et $t \in [0, \sqrt{n}[$, on a alors $\pm \frac{t^2}{n} \in]-1, +\infty[$ et donc $\ln\left(1 + \frac{t^2}{n}\right) \leqslant \frac{t^2}{n}$ et $\ln\left(1 \frac{t^2}{n}\right) \leqslant -\frac{t^2}{n}$.

Ainsi, $n\ln\left(1-\frac{t^2}{n}\right)\leqslant -t^2\leqslant -n\ln\left(1+\frac{t^2}{n}\right)$. En passant à l'exponentielle qui est croissante,

$$\left(1 - \frac{t^2}{n}\right)^n \leqslant e^{-t^2} \leqslant \left(1 + \frac{t^2}{n}\right)^{-n}$$

— La relations qui précède est encore vraie pour $t = \sqrt{n}$, et en intégrant on

obtient:

$$\underbrace{\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \mathrm{d}t}_{I_1} \leqslant \int_0^{\sqrt{n}} e^{-t^2} \mathrm{d}t \leqslant \underbrace{\int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} \mathrm{d}t}_{I_2}$$

En posant $t = \sqrt{n}\cos(u)$ dans I_1 (possible d'après les valeurs prises par t), on a $dt = -\sqrt{n}\sin(u)du$ et donc $I_1 = \int_{\frac{\pi}{2}}^{0} -\sqrt{n}\sin^{2n+1}(u)du$.

En posant $u = \sqrt{n} \tan(u)$ dans I_2 on obtient $I_2 = \int_0^{\frac{\pi}{4}} \sqrt{n} \cos^{2n-2}(u) du$ car $1 + \tan^2 = \frac{1}{\cos^2} = \tan'$.

— Si on note $W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$ (par changement de variable $\frac{\pi}{2} - t$), on a $I_2 \leq \sqrt{n} W_{2n-2}$ (car on intègre une fonction positive sur un segment plus petit) et donc

$$\sqrt{n}W_{2n+1} \leqslant \int_0^{\sqrt{n}} e^{-t^2} dt \leqslant \sqrt{n}W_{2n-2}$$

D'après l'étude des intégrales de Wallis, $W_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$ et par encadrement $\int_0^{\sqrt{n}} e^{-t^2} dt \underset{n \to +\infty}{\rightarrow} \frac{\sqrt{\pi}}{2}$.

II.2.8 Proposition

 $L^1(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel : toute combinaison linéaire de fonctions intégrables est encore intégrable.

Preuve.

- 1. La fonction nulle est clairement intégrable sur I et son intégrale vaut 0.
- 2. Soient $f, g \in L^1(I, \mathbb{K})$ et $\lambda, \mu \in \mathbb{K}$.

Montrons que $\lambda f + \mu g$ est encore intégrable. Comme $|\lambda f + \mu g| \leq |\lambda| |f| + |\mu| |g|$ on peut se ramener au cas où f, g sont des fonctions à valeurs réelles et positives (par comparaison de fonctions positives).

Supposons donc que $f,g:[a,b[\to\mathbb{R}^+ \text{ sont intégrables (le raisonnement est similaire en <math>a$). On a, pour $x\in[a,b[,\int_a^x(\lambda f+\mu g)=\lambda\int_a^x f+\mu\int_a^x g$ qui converge bien quand $x\to b^-$ par combinaison linéaire de limites finies.

III Exemples importants

III.1 Application aux séries numériques

III.1.1 Théorème

Soit $f:[n_0,+\infty[\to\mathbb{R} \text{ (avec } n_0\in\mathbb{N}) \text{ une fonction continue, positive et décroissante.}]$

$$\int_{n_0}^{+\infty} f(t) dt$$
 et $\sum_{n \geqslant n_0} f(n)$ ont la même nature

Preuve.

Pour un $N > n_0$ on a, (faire un schéma. La preuve est la décroissance de f et la croissance de l'intégrale), $\int_{n_0+1}^{N+1} f(t) dt \leq \sum_{n_0}^{N} f(n) \leq \int_{n_0}^{N} f(t) dt$.

Ainsi la suite des sommes partielle est majorée ssi $x \mapsto \int_{n_0}^x f(t) dt$ est majorée (il suffit de majorer les valeurs aux entiers car cette fonction est croissante).

III.1.2 Exemple

On prouve de cette manière la convergence et la divergence des séries de Riemann.

III.1.3 Application aux séries divergentes

On souhaite donner un équivalent de $\ln(n!) = \sum_{k=2}^{n} \ln(k)$.

Or, pour $k \ge 2$, $\int_{k-1}^k \ln(t) dt \le \ln(k) \le \int_k^{k+1} \ln(t) dt$ car ln est croissante sur [k-1,k] et sur [k,k+1].

En sommant de 2 à n on obtient $\int_1^n \ln(t) dt \leq \ln(n!) \leq \int_2^{n+1} \ln(t) dt$ ie $n \ln(n) - n + 1 \leq n! \leq (n+1) \ln(n+1) - (n+1) - 2 \ln(2) + 2$. On en tire classiquement $\ln(n!) = n \ln(n) - n + o_{+\infty}(n)$.

III.1.4 Restes d'une série convergente

On cherche un équivalent de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$. Avec $S_n = \sum_{k=1}^{n} \frac{1}{k^2}$ on a (cf DM) $S_n + R_n = \frac{\pi^2}{6}$ et donc $|S_n - \frac{\pi^2}{6}| = |R_n|$ où $R_n \to 0$. R_n représente en fait la qualité de

l'approximation de $\frac{\pi^2}{6}$ par la somme finie S_n .

Pour k > n (on fixe $n \ge 1$ pour l'instant), on a classiquement $\int_{k}^{k+1} \frac{1}{t^2} dt \le \frac{1}{k^2} \le \int_{k-1}^{k} \frac{1}{t^2} dt$ et en sommant de n+1 à $+\infty$, $\int_{n+1}^{+\infty} \frac{1}{t^2} dt \le R_n \le \int_{n}^{+\infty} \frac{1}{t^2} dt$.

Or $\int_{n}^{+\infty} \frac{1}{t^2} dt = \frac{1}{n}$ et donc $R_n \sim \frac{1}{n}$ (multiplier l'encadrement par n + théorème d'encadrement).

III.2 Intégrales classiques

III.2.1 Fonction Γ

Reprenons II.2.6. On pose, pour $\beta>0,$ $\Gamma(\beta)=\int_0^{+\infty}t^{\beta-1}e^{-t}\mathrm{d}t.$ Donnons un lien entre $\Gamma(\beta+1)$ et $\Gamma(\beta)$

On a, pour a > 0 et b > a, $\int_a^b t^\beta e^{-t} dt = \left[-t^\beta e^{-t} \right]_a^b + \int_a^b \beta t^{\beta - 1} e^{-t} dt$. Comme le crochet tend vers 0 en 0 et $+\infty$ $(\beta > 0)$, $\Gamma(\beta + 1) = \beta \Gamma(\beta)$.

De plus, $\Gamma(1) = 1$ et par récurrence immédiate, $\forall n \in \mathbb{N} \setminus \{0\}$ $\Gamma(n) = (n-1)!$.

III.2.2 $\int_I f$ converge mais $\int_I |f|$ diverge

Comme pour les série numérique, ce n'est pas parce que f n'est pas intégrable que l'on peut déduire la divergence de l'intégrale de f. Voir les exemples de séries convergentes mais pas absolument convergentes.

Nous allons démontrer le résultat

$$\int_0^{+\infty} \frac{\sin t}{t} dt \text{ converge, } \int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt diverge$$

Posons $f: t \mapsto \frac{\sin t}{t}$ qui est continue sur $I =]0, +\infty[$. On veut montrer que l'intégrale de f sur I converge mais que f n'est pas intégrable sur I.

- 1. Montrons que $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
 - (a) $\lim_{t\to 0^+} f(t) = 1$ par quotient d'équivalents et donc f est prolongeable par continuité en 0 et $\int_0^1 f(t) dt$ converge.

(b) Pour l'intervalle $[1, +\infty[$, nous allons effectuer une intégration par partie. Soit A > 1.

Posons $u:t\mapsto \frac{1}{t}$ et $v':t\mapsto \sin(t)$ qui sont \mathcal{C}^1 sur [1,A]. Alors $u':t\mapsto -\frac{1}{t^2}$ et $v: t \mapsto -\cos(t)$ convient. Par intégration par parties

$$\int_{1}^{A} \frac{\sin(t)}{t} dt = \left[-\frac{\cos(t)}{t} \right]_{1}^{A} - \int_{1}^{A} \frac{\cos(t)}{t^{2}} dt = \frac{\cos(1)}{1} - \frac{\cos(A)}{A} - \int_{1}^{A} \frac{\cos(t)}{t^{2}} dt$$

Nous avons deux limites à étudier.

- Premièrement $0 \leqslant \left| \frac{\cos(A)}{A} \right| \leqslant \frac{1}{A}$ et donc $\frac{\cos(A)}{A} \xrightarrow{A \to +\infty} 0$ par encadrement.
- Deuxièmement, $g:t\mapsto \frac{\cos(t)}{t^2}$ est intégrable sur $[1,+\infty[$ car $\forall t\geqslant 1\ |g(t)|\frac{1}{t^2}$ et $\int_{-\frac{\pi}{2}}^{+\infty} \frac{1}{t^2}$ converge et par comparaison.
 - Ainsi $\int_{-t^2}^{A} \frac{\cos(t)}{t^2} dt$ possède une limite finie lorsque $A \to +\infty$.

Finalement, $\int_{0}^{+\infty} \frac{\sin t}{t} dt$ converge.

Coin culture : cette intégrale s'appelle intégrale de Dirichlet et vaut $\frac{\pi}{2},$ fait qui peut faire l'objet d'un problème.

2. Montrons que f n'est pas intégrable sur I. Supposons qu'entraire que $\int_{0}^{+\infty} \frac{|\sin t|}{t} dt$ converge et donc que $\int_{-t}^{+\infty} \frac{|\sin t|}{t} dt$ converge.

Soit $N \in \mathbb{N}\setminus\{0,1\}$. Notons $u_N = \int_{-\infty}^{N\pi} \frac{|\sin t|}{t} dt$ (il s'agit d'une suite convergence d'après notre hypothèse). On a

$$u_N = \sum_{k=1}^{N-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt$$

Soit $k \in [1, N-1]$ et $t \in [k\pi, (k+1)\pi]$. Alors $\frac{1}{t} \geqslant \frac{1}{(k+1)\pi}$ et par produit par $|\sin t| \ge 0$, $\frac{|\sin t|}{t} \ge \frac{|\sin t|}{(k+1)\pi}$

Ainsi, par croissance de l'intégrale $\int_{t}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt \geqslant \frac{1}{k+1} \int_{t}^{(k+1)\pi} |\sin(t)| dt$.

De plus, si
$$k$$
 est pair, $\int_{k\pi}^{(k+1)\pi} |\sin(t)| dt = \int_{k\pi}^{(k+1)\pi} \sin(t) dt = 2$ et si k est impair, alors $\int_{k\pi}^{(k+1)\pi} |\sin(t)| dt = \int_{k\pi}^{(k+1)\pi} -\sin(t) dt = 2$.

Ainsi, par somme d'inégalité, $u_N \geqslant \sum_{k=1}^{N-1} \frac{2}{(k+1)\pi} = \frac{2}{\pi} \sum_{k=2}^{N} \frac{1}{k}$. On reconnaît une somme partielle de la série harmonique (privée de son premier terme), qui est notoirement divergente, ie $u_N \xrightarrow[N \to +\infty]{} +\infty$. Contradiction.

III.2.3 $\int_{0}^{+\infty} f$ converge mais $f \neq 0$

Nous n'avons pas de critère aussi facile que la divergence grossière des séries pour les intégrales.

Montrons que $\int_0^{+\infty} \sin(e^t) dt$ converge. $f: t \mapsto \sin(e^t)$ est continue sur $[0, +\infty[$. Posons Par somme, $\int_1^A \frac{\sin(t)}{t} dt$ possède une limite finie lorsque $A \to +\infty$ ie $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ et notre intégrale à la même return $\int_1^{+\infty} ... 1$. $dt = \frac{1}{u}du$ et notre intégrale à la même nature que $\int_{1}^{+\infty} \sin(u) \frac{1}{u} du$. D'après le point précédent, $\int_{a}^{+\infty} \sin(e^t) dt$ converge.

> Cependant, f ne possède pas de limite en $+\infty$ (car $x \mapsto \sin x$ n'a pas de limite en $+\infty.$

Index

Intégrale impropre, 1 doublement, 1

Riemann intégrale de, 3