Analyse de sup

Exercice 1

Pour $x \in \mathbb{R}^+$ et $n \in \mathbb{N}$ on pose $f_n(x) = \ln(1 + 3x + x^n)$.

- 1. Montrer qu'il existe un unique réel positif a_n tel que $f_n(a_n) = 1$.
- 2. Montrer que $0 \le a_n \le 1$.
- 3. Calculer a_0, a_1, a_2 .
- 4. Déterminer le signe de $f_{n+1}(x) f_n(x)$.
- 5. Etudier la convergence ainsi que l'éventuelle limite de $(a_n)_{n\in\mathbb{N}}$.

Exercice 2

Montrer que l'équation $\int_x^{f(x)} e^{t^2} dt = 1$ définit une application f sur \mathbb{R} . Montrer que f est continue. Est-elle dérivable?

Exercice 3

- 1. Montrer que $\forall x > 0 \arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$.
- 2. En déduire la limite en $+\infty$ de $\frac{x}{\arctan(x)} \frac{2}{\pi}x$.
- 3. Calcular $\lim_{n \to +\infty} \int_{\pi}^{2\pi} \frac{x}{\arctan(nx)} dx$

Exercice 4

- 1. Montrer que f, définie sur \mathbb{R} par $f(x) = e^{x^2} \int_{0}^{x} e^{-t^2} dt$ vérifie une équation différentielle
- 2. Déterminer le développement en série entière de f et calculer son rayon de convergence.

Séries

Exercice 5

On pose $\alpha, \beta \in]0, +\infty[$ et, pour $n \ge 2$ on pose $u_n = \frac{1}{n^{\alpha} \ln(n)^{\beta}}$.

- 1. Dans le cas $\alpha > 1$, étudier la nature de $\sum u_n$.
- 2. Même question dans le cas $\alpha < 1$.
- 3. En utilisant une comparaison série-intégrale, étudier le cas $\alpha = 1$

Exercice 6

Soit $a \in \mathbb{R}^*$. On considère la série $\sum_{n \geqslant 0} \frac{1}{1 + (na)^2}$.

- 1. Etudier la convergence. La somme, quand elle existe, est notée h(a).
- 2. Etudier les variations de h, puis sa limite en $+\infty$.

3. Prouver que

$$\forall k \in \mathbb{N} \ \frac{1}{1 + ((k+1)a^2)} \leqslant \int_{k}^{k+1} \frac{1}{1 + (ta)^2} \leqslant \frac{1}{1 + (ka)^2}$$

4. Donner un équivalent de h en 0.

Exercice 7

- 1. Etudier la convergence des séries de terme général $\frac{(2n)!}{(n!)^2}$ et $\frac{n!}{3\times 5\times \cdots \times (2n-1)}$.
- 2. Pour $n \ge 2$ on pose $U_n = \frac{1}{n}$ et $V_n = \frac{1}{n(\ln n)^2}$. Calculer la limite de $\frac{U_{n+1}}{U_n}$ et celle de $\frac{V_{n+1}}{V_n}$. Que dire de la convergence des séries

Exercice 8

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels décroissante et convergeant vers 0. On note, pour $N \in \mathbb{N}$, S_N la somme partielle de rang N de la série $\sum ((-1)^n u_n$. Justifier que $\sum (-1)^n u_n$ converge en montrant que les suites $(S_{2N})_{N\in\mathbb{N}}$ et $(S_{2N+1})_{N\in\mathbb{N}}$ sont adjacentes.
- 2. Développer en série entière au voisinage de 0, en précisant le rayon de convergence, la fonction $f: x \mapsto \ln(1+x) + \ln(1-2x)$ La série obtenue converge-t-elle pour $x = \frac{1}{4}$? $x = \frac{1}{2}$? $x = -\frac{1}{2}$?

Intégrales

Exercice 9

Convergence et calcul de $\int\limits_{-e^{t}+e^{-t}}^{+\infty}\mathrm{d}t.$

Exercice 10

Soit E l'ensemble des fonctions continues sur $[0, +\infty[$ à valeurs dans \mathbb{R} , telles que $\int_{-\infty}^{+\infty} f^2(t)e^{-t}dt$ converge.

- 1. Pour $a, b \in \mathbb{R}$, montrer que $|ab| \leqslant \frac{a^2 + b^2}{2}$.
- 2. Montrer que $\varphi: \left\{ \begin{array}{ccc} E \times E & \to & \mathbb{R} \\ (f,g) & \mapsto & \int\limits_0^{+\infty} f(t)g(t)e^{-t}\mathrm{d}t \end{array} \right.$ est définie et constitue un pro-
- 3. On définit sur $[0,+\infty[$ les fonctions $L_0(x)=1, \forall n\in\mathbb{N}^*$ $L_n(x)=\frac{e^x}{n!}\frac{\mathrm{d}^n}{\mathrm{d}x^n}(e^{-x}x^n)$. Montrer que L_n est polynomiale de degré n.
- 4. Montrer que $(L_n)_{n\in\mathbb{N}}$ est orthonormale.

Exercice 11

Soient $\alpha, \beta > 0$ et $f_{\alpha}(x) = \int_{0}^{+\infty} \frac{t^{\alpha-1}}{t+\beta} e^{-xt} dt$. Montrer que f_{α} est définie sur \mathbb{R}_{+}^{+} puis montrer On pose $E = C^{2}([0,1],\mathbb{R})$. qu'elle v est \mathcal{C}^1 .

Donner ses variations et limites aux bornes. Est-elle \mathcal{C}^{∞} ?

Exercice 12

On note D l'ensemble des fonctions continues sur \mathbb{R} et telles que $\forall p \in \mathbb{N} \lim_{x \to \pm \infty} x^p f(x) = 0$.

- 1. Donner le domaine de définition de $F(t) = \int_{-\infty}^{+\infty} e^{ixt} f(x) dx$ pour $f \in D$.
- 2. Montrer que F est C^1 sur ce domaine et calculer F'.
- 3. Montrer que F est de classe \mathcal{C}^{∞} sur ce domaine et calculer $F^{(k)}$ pour $k \in \mathbb{N}$ (on pourra s'aider d'une conjecture et procéder par récurrence).

Exercice 13

- 1. Quelle est la nature de l'intégrale $\int_{t}^{+\infty} \frac{e^{-t}}{t+x} dt$?
- 2. Montrer que la fonction $fx \mapsto \int_{0}^{+\infty} \frac{e^{-t}}{t+x} dt$ est de classe \mathcal{C}^{1} sur \mathbb{R}_{+}^{*} et donner sa dérivée.
- 3. Quelle est la limite de f en $+\infty$?
- 4. Pour aller plus loin : donner une équation différentielle vérifiée par f puis déduire une expression de f, ou encore déterminer un équivalent de f(x) en 0 ou $+\infty$

Exercice 14

On définit la fonction f par $f(x) = \int_{0}^{\frac{\pi}{2}} \cos(x \sin(t)) dt$.

- 1. Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R} .
- 2. Montrer que f vérifie l'équation différentielle xy'' + y' + xy = 0 grâce à une intégration par parties.
- 3. Appliquer la méthode de variation de la constante sur f.
- 4. Déterminer toutes les solutions de l'équation différentielle sur \mathbb{R}

Exercice 15

Soit $k \in \mathbb{N}^*$, $F_k(x) = \int_0^{+\infty} e^{-kt} \sin(xe^t) dt$.

- 1. Montrer que F_k est définie et continue sur \mathbb{R} .
- 2. Montrer que F_k est solution de l'équation différentielle :

$$xy' - ky = -\sin(x)$$

Exercice 16

- 1. Montrer que $\varphi : \begin{cases} E \times E \to \mathbb{R} \\ (f,g) \mapsto \int_{0}^{1} (f(t)g(t) + f'(t)g'(t)) dt \end{cases}$ définit un produit sca-
- 2. Soient $V = \{f \in E | f(0) = f(1) = 0\}$ et $W = \{f \in E | f'' = f\}$. Montrer que V et W sont supplémentaires orthogonaux.
- 3. Soit $E_{a,b} = \{ f \in E | f(0) = a \text{ et } f(1) = b \}$. Calculer $\inf_{f \in E_{a,b}} (\int_0^1 (f^2 + f'^2))$.

Exercice 17

On considère l'ensemble E des fonctions à valeurs réelles, de classe \mathcal{C}^1 sur $[0, +\infty[$, qui sont bornées et qui s'annulent en 0.

- 1. Montrer que E est un \mathbb{R} -espace vectoriel
- 2. Soit $f \in E$. Montrer que $x \mapsto \frac{f(x)}{x}$ est prolongeable par continuité en 0.
- 3. On pose, pour $f, g \in E$, $\varphi(f, g) = \int_{0}^{+\infty} \frac{f(t)g(t)}{t^2} dt$.
 - (a) Montrer que $\varphi(f,g)$ est une quantité bien définie et que φ est un produit scalaire
 - (b) Pour $f, g \in E$, montrer que $\int_{0}^{+\infty} \frac{f(t)g(t)}{t^2} dt = \int_{0}^{+\infty} \frac{f'(t)g(t) + f(t)g'(t)}{t} dt.$

Exercice 18

- 1. Montrer que (E): $e^{-x} = x$ admet une unique solution dans \mathbb{R} , que l'on notera x_0 .
- 2. En déduire que $f:(x,y) \longmapsto x^2 2xy + 2y^2 + e^{-x}$ admet un unique extremum, dont on donnera la nature, atteint en un unique point dont on exprimera les coordonnées à l'aide de x_0 .

Équations différentielles

Exercice 19 (Mines)

Résoudre sur \mathbb{R} l'équation $xy' - y = \frac{x^2}{1+x^2}$.

Exercice 20
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & pose \ A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

1. Déterminer toutes les colonnes X de trois fonctions dérivables sur \mathbb{R} vérifiant X' = $AX \text{ et } X(0) = \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$

2. Quelle courbe est définie par X?

Exercice 21 Soit
$$U = \{(x,y) \in \mathbb{R}^2 | x+y>0 \}$$
 et soit $g: \left\{ \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{R} & \to & U \\ (t,u) & \mapsto & (t+u,t-u) \end{array} \right.$

- 1. Montrer que g réalise une bijection de $V=\mathbb{R}_+^*\times\mathbb{R}$ sur U et qu'elle est de classe \mathcal{C}^1 sur V.
- 2. Soit f une fonction de classe \mathcal{C}^1 sur U et à valeurs dans \mathbb{R} . On pose $F = f \circ g$. Déterminer les dérivées partielles de f en fonction de celles de F.
- 3. On considère l'équation aux dérivées partielles :

$$(E): \frac{2}{x+y}\frac{\partial f}{\partial x} + \frac{2}{x+y}\frac{\partial f}{\partial y} + \frac{2}{2+x+y}f = (2+x+y)\cos(\frac{x+y}{2})$$

On suppose que f est une solution de (E) sur U, de classe \mathcal{C}^1 . Déterminer une équation dont F est solution.

4. Déterminer les solutions de (E) sur U.