Table des matières

I Sommes et produits d'espaces

I.1 Produit d'espaces vectoriels

I.1.1 Proposition (Espace produit)

Soient E,F deux \mathbb{K} -espaces vectoriels. Les opérations suivantes font de $E\times F$ un \mathbb{K} -espace vectoriel :

- 1. $\forall (x,y), (x',y') \in E \times F(x,y) + (x',y') = (x+x',y+y').$
- 2. $\forall (x,y) \in E \times F \forall \lambda \in \mathbb{K} \ \lambda(x,y) = (\lambda x, \lambda y)$.

Preuve.

On prouve que cette loi + possède les bonnes propriétés dans $E \times F$ très facilement. Soient $(x, y), (x', y') \in E \times F$ Soient maintenant $\lambda, \mu \in \mathbb{K}$

$$- \lambda.((x,y) + (x',y')) = \lambda.(x + x', y + y') = (\lambda.(x + x'), \lambda.(y + y')) = (\lambda.x + \lambda.x', \lambda.y + \lambda.y') = (\lambda.x, \lambda.y) + (\lambda.x', \lambda.y') = \lambda.(x,y) + \lambda.(x',y')$$

- $--(\lambda+\mu).(x,y)=...$
- $--\ \lambda.(\mu.(x,y))=\dots$
- -1.(x,y) = ...

I.1.2 Corollaire

Si $E_1 ldots, E_n$ sont des \mathbb{K} -espaces vectoriels, alors $\prod_{i=1}^n E_i$ est un \mathbb{K} -espace vectoriel pour la loi produit définie précédemment (c'est à dire qu'on somme composante par composante les n-uplets et qu'on les multiplie toutes par $\lambda \in \mathbb{K}$).

Rappelons que le produit cartésien d'ensembles est associatif, ce qui justifie la notation $\frac{n}{n}$

 $\prod_{i=1}^{n}$

I.1.3 Exemple

Les exemples les plus classiques sont $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ et \mathbb{C}^n .

I.1.4 Proposition

Soit E, F deux \mathbb{K} -espaces vectoriels de dimension finie.

Alors $E \times F$ est un \mathbb{K} -espace vectoriel de dimension finie et $\dim(E \times F) = \dim E + \dim F$.

Preuve.

Soient (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_p) une base de F. On considère la famille

$$\mathcal{B} = ((e_1, 0_F), \dots, (e_n, 0_F), (0_E, f_1), \dots, (0_E, f_p)))$$

- . On va montrer que $\mathcal B$ est une base de $E\times F.$
- Méthode 1.

Montrons que \mathcal{B} est libre. Soient $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ des scalaires.

Supposons
$$\sum_{i=1}^{n} \alpha_i(e_i, 0_F) + \sum_{i=1}^{p} \beta_i(0_E, f_i) = (0_E, 0_F).$$

Le membre de gauche est, par définition des opérations dans $E \times F$, $\left(\sum_{i=1}^{n} \alpha_i e_i, \sum_{i=1}^{n} \beta_i f_i\right)$

Par unicité des composantes on a donc $\sum_{i=1}^{n} \alpha_i e_i = 0_E$ et $\sum_{i=1}^{n} \beta_i f_i = 0_F$. Comme

les familles (e_1, \ldots, e_n) et (f_1, \ldots, f_p) sont libres on en déduit que $\alpha_1 = \cdots = \alpha_n = 0_{\mathbb{K}}$ et $\beta_1, \ldots, \beta_p = 0_{\mathbb{K}}$ ce qui prouve bien la liberté de \mathcal{B}

Montrons maintenant que \mathcal{B} est génératrice de $E \times F$. On ne peut pas utiliser un argument de cardinal et de dimension, car on chercher justement à calculer la dimension de $E \times F$...

Soit $(x,y) = E \times F$. Comme $x \in E$ et que (e_1, \ldots, e_n) est génératrice de E on peut écrire $x = \sum_{i=1}^{n} x_i e_i$ pour certains scalaires x_1, \ldots, x_n .

De même $y = \sum_{i=1}^{p} y_i f_i$ pour certains scalaires y_1, \dots, y_p . Alors on a directement

$$(x,y) = \sum_{i=1}^{n} x_i(e_i, 0_F) + \sum_{i=1}^{p} y_i(0_E, f_i)$$

ce qui prouve que \mathcal{B} est génératrice de $E \times F$.

Finalement $\dim(E \times F) = \operatorname{Card}(\mathcal{B}) = n + p = \dim(E) + \dim(F)$.

— Méthode 2.

Il suffit de montrer que l'application (clairement linéaire)

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{K}^{n+p} & \to & E \times F \\ (\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_p) & \mapsto & \sum_{i=1}^n \lambda_i(e_i, 0_F) + \sum_{i=1}^p \mu_i(0_E, f_i) \end{array} \right.$$

est bijective. Or l'application qui à $(x,y) \in E \times F$ associe la famille des coordonnées de x (dans (e_1,\ldots,e_n)) suivie de la famille des coordonnées de y (dans (f_1,\ldots,f_p)) est clairement la réciproque de φ .

Ceci prouve que $E \times F$ est de dimension finie et $\dim(E \times F) = \dim E + \dim F$.

I.1.5 Corollaire

Soient $E_1 \dots, E_n$ des K-espaces vectoriels de dimensions finies. Alors $\prod_{i=1}^n E_i$ est de dimension finie et

$$\dim\left(\prod_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \dim(E_i)$$

Preuve.

Le cas n=1 est trivial et le cas n=2 est le résultat précédent.

L'associativité du produit cartésien et de la somme d'entiers prouve immédiatement l'hérédité d'une récurrence sur n et on conclut par le principe de récurrence.

I.1.6 Exemple

 $\dim \mathbb{R}^n = n$, $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$.

I.2 Espaces supplémentaires

I.2.1 Définition

Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces. La somme de F et G est $F+G=\{x_F+x_G|\ x_F\in F\ \text{et}\ x_G\in G\}.$

C'est un espace vectoriel et on a même $F + G = \text{Vect}(F \cup G)$.

I.2.2 Famille génératrice

Si on dispose d'une famille (u_i) génératrice de F et d'une famille (v_i) génératrice de G, alors la concaténation de ces familles engendre F + G.

Ainsi, en dimension finie,

$$\dim(F+G) \leqslant \dim(F) + \dim(G), \ \dim(F+G) \geqslant \dim(F), \ \dim(F,+G) \geqslant \dim(G)$$

I.2.3 Exemple

On se place dans \mathbb{R}^3 .

Donner une base de $P_1 + P_2$ où $P_1 : x - y + 2z = 0$ et $P_2 = \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$).

On a $P_1 = \text{Vect}\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix}$) (en résolvant le système à 3 inconnue et une seule

équation, on a posé y, z comme paramètres).

Alors
$$P_1 + P_2 = \text{Vect}\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\1 \end{pmatrix})$$
 (cette famille génératrice ne peut

pas être libre car elle est de cardinal 4 dans un espace de dimension maximale 3). on remarque la présence de deux fois le même vecteur. Alors

$$P_1 + P_2 = \operatorname{Vect}\begin{pmatrix} -2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\1 \end{pmatrix})$$

il reste à prouver que cette dernière famille est libre. Considérons sa matrice dans la base canonique, $M = \begin{pmatrix} -2 & 1 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$. Par l'opération $L_1 \leftarrow L_1 + 2L_3$ puis développement par rapport à la première ligne,

$$\det(M) = +1 \times \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$$

et donc $M \in GL_3(\mathbb{R})$. Ainsi la famille de ses colonnes forme une base de \mathbb{R}^3 donc est libre et est une base de $P_1 + P_2$.

Deuxième méthode : $P_1 \subset P_1 + P_2 \subset \mathbb{R}^3$ donc $2 \leq \dim(P_1 + P_2) \leq 3$. De plus, $\dim(P_1 + P_2) = 2$ ssi $P_1 + P_2 = P_1$ (car P_1 est un sous espace de $P_1 + P_2$). Or $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \notin P_1$

(il ne vérifie pas l'équation) et donc $P_1+P_2\neq P_1$ et la seule possibilité restante est $\dim(P_1+P_2)=3$ et donc $P_1+P_2=\mathbb{R}^3$.

Finalement une base de $P_1 + P_2$ est la base canonique de \mathbb{R}^3 .

I.2.4 Définition

Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces de E.

On dit que F et G sont supplémentaires dans E et on note $E=F\oplus G$ ssi

$$\forall x \in E \exists ! (x_F, x_G) \in F \times G \ x = x_F + x_G$$

Avec ces notations, x_F est appelé le projeté de x sur F dans la direction G (ou parallèlement à G) et x_G le projeté de x sur G dans la direction F.

I.2.5 Lemme

Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces de E.

$$F \oplus G = E \iff \varphi : \left\{ \begin{array}{ccc} F \times G & \to & E \\ (x_F, x_G) & \mapsto & x_F + x_G \end{array} \right. \text{ est un isomorphisme.}$$

Preuve.

 $\varphi \in \mathcal{L}(F \times G, E)$ facilement.

La définition donnée est exactement là même que celle de la bijectivité de φ (pour tout élément de l'ensemble d'arrivé il existe un unique antécédent par φ .)

I.2.6 Corollaire

En dimension finie, SI $E = F \oplus G$ Alors $\dim(E) = \dim(F) + \dim(G)$.

Preuve.

Lorsque φ est un isomorphisme entre espaces de dimensions finies, on a

$$\dim(F \times G) = \dim(E).$$

I.2.7 Proposition

Avec les notations de la définition,

$$E = F \oplus G \iff \begin{cases} E = F + G \\ F \cap G = \{0_E\} \end{cases}.$$

Preuve.

Par définition, E = F + G ssi l'application φ est surjective car $\text{Im}(\varphi) = F + G$. Montrons que φ est injective ssi $F \cap G = \{0_E\}$.

Supposons que $F \cap G = \{0_E\}$. Soit $(x_F, x_G) \in F \times G$. On a $(x_F, x_G) \in \ker(\varphi) \iff x_F = -x_G$ mais alors x_F, x_G sont alors des éléments de $F \cap G$ et donc $x_F = x_G = 0_E$. φ est donc injective.

Supposons réciproquement que φ est injective. Soit $x \in F \cap G$ (on montre que $x = 0_E$). On a $\varphi(x, 0_E) = x = \varphi(0_E, x)$ (calcul licite car x est à la fois dans F et G). Or φ est injective et donc $x = 0_E$ et $0_E = x$. Finalement, on a bien $F \cap G = \{0_E\}$.

I.2.8 Théorème (Théorème de la base adaptée)

Soit E un espace de dimension fini et F, G des sous-espaces de E.

 $E = F \oplus G$ ssi la concaténation d'une base de F et d'une base de G est une base de E. On dit que la base obtenue (par concaténation) est **adaptée** à la somme $F \oplus G$.

Preuve.

Soient (f_1, \ldots, f_p) une base de F et (g_1, \ldots, g_r) une base de G.

Alors $\mathcal{B} = ((f_1, 0_E), \dots, (f_p, 0_E), (0_E, g_1), \dots, (0_E, g_r))$ est une base de $F \times G$ d'après la preuve du théorème I.1.4.

On sait que l'application linéaire φ est bijective ssi $\varphi(B)$ est une base de E. Comme $\varphi(\mathcal{B}) = (f_1, \ldots, f_p, g_1, \ldots g_r)$ le théorème est une conséquence directe de I.2.5.

I.2.9 Proposition (Caractérisation des supplémentaires)

Soit E un \mathbb{K} -espace vectoriel de dimension finie, F,G deux sous-espaces de E.

$$F \oplus G = E \iff \begin{cases} E = F + G \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$
$$\iff \begin{cases} F \cap G = \{0_E\} \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$

⇔ la concaténation d'une base de F et d'une base de G est une base de E.

Preuve.

Il s'agit d'applique le théorème de Grassman pour les deux premiers points.

I.2.10 Exemple

Dans \mathbb{R}^2 puis dans \mathbb{R}^3 trouver les espaces qui sont supplémentaires.

Dans \mathbb{R}^2 , on a $F \oplus G = E$ ssi $\{F,G\} = \{\{0_{\mathbb{R}^2}\}, \mathbb{R}^2\}$ ou F,G sont deux droites non confondues.

Dans \mathbb{R}^3 , on a $F \oplus G = E$ ssi $\{F, G\} = \{\{0_{\mathbb{R}^3}\}, \mathbb{R}^3\}$ ou F, G sont un plan et une droite vérifiant que la droite n'est pas incluse dans le plan.

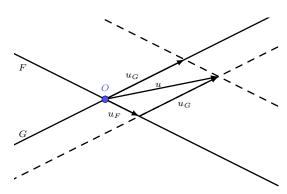
I.2.11 Définition

Soit E un \mathbb{K} -espace vectoriel. Soient également F,G deux sous-espaces de E, supplémentaires dans E. Tout $x \in E$ s'écrit donc de manière unique comme $x_F + x_G$ avec $x_F \in F$ et $x_G \in G$. L'application $p: \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & x_F \end{array} \right.$ est appelé projecteur sur F parallèlement à G (ou de direction G).

L'application $s: \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & x_F - x_G \end{array} \right.$ est appelé symétrie par rapport à F parallèlement à G (ou de direction G).

I.2.12 Illustration

On représente les deux projections d'un vecteur u de \mathbb{R}^2 sur les droites F et G supplémentaires dans \mathbb{R}^2 , avec les mêmes conventions de notation que la définition. Pour obtenir



les projections, on a tracé en pointillés les parallèles à F et G passant par l'extrémité de u. les projections sont obtenues par intersection de ces parallèles avec G et F respectivement.

Remarquons qu'on a bien $u = u_F + u_G$ ou encore $u_G = u - u_F$

I.2.13 Liens entre ces applications

- 1. On a les liens important entre ces applications : s = 2p Id et $p = \frac{s + Id}{2}$.
- 2. Si p' et s' désignent les projection et symétrie sur G et de direction F, on a $p+p'=Id, p\circ p'=0=p'\circ p, s+s'=0, s\circ s'=s'\circ s=-Id.$

I.2.14 Méthode

Pour déterminer la projection p(x) d'un vecteur x sur F parallèlement à G on exprime deux conditions sur p(x):

- 1. $p(x) \in F$
- $2. \ x p(x) \in G$

I.2.15 Exemple

Soient $u = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $v = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \in \mathbb{R}^2$. Alors (u, v) est une base de \mathbb{R}^2 (deux vecteurs libres dans un espace de dimension 2).

Ainsi F = Vect(u) et G = Vect(v) sont supplémentaires dans \mathbb{R}^2 d'après le théorème de la base adaptée. Notons p la projection sur F dans la direction G et déterminons p(X) où $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

- On a $p(X) \in F$ et donc $p(X) = \alpha u$ pour un $\alpha \in \mathbb{R}$.
- On a $X p(X) \in G$ et donc $X p(X) = \beta v$ pour un $\beta \in \mathbb{R}$.

Ainsi
$$\begin{pmatrix} x \\ y \\ = \end{pmatrix} X = \alpha u + \beta v = \begin{pmatrix} \alpha - 2\beta \\ -\alpha + \beta \end{pmatrix}$$
 et donc $-\alpha = x + 2y$.

Finalement,
$$p(X) = \alpha u = (-x - 2y) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -x - 2y \\ x + 2y \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
.

On constate que $p \in \mathcal{L}(\mathbb{R}^2)$ et est canoniquement associée à la matrice $\begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$.

Si on note s la symétrie associée, on a $s=2p-Id_{\mathbb{R}^2}$ et on en déduit sa matrice canoniquement associée.

I.2.16 Théorème

Soit E un $\mathbb{K}\text{-espace}$ vectoriel. Soient également F,G deux sous-espaces de E, supplémentaires dans E

1. Soit p le projecteur sur F de direction G. On a alors :

$$-p \in \mathcal{L}(E)$$

$$-p^2 = p$$

$$-\ker p = G$$

$$-\operatorname{Im} p = F = \ker(Id_E - p)$$

2. Réciproquement si $f \in \mathcal{L}(E)$ vérifie $f^2 = f$ alors f est le projecteur sur $\mathrm{Im}(f) = f$ $\ker(f - Id)$ dans la direction $\ker(f)$ (et on a donc $\ker(f) \oplus \operatorname{Im}(f) = E$).

I.2.17 Théorème

Soit E un \mathbb{K} -espace vectoriel. Soient également F, G deux sous-espaces de E, supplémentaires dans E

- 1. Soit s la symétrie par rapport à F dans la direction G. Alors:
 - $s \in GL(E)$ et $s^2 = Id_E$ ie. $s = s^{-1}$
 - $-F = \ker(s Id_E) = \{x \in E | s(x) = x\}$
 - $-G = \ker(s + Id) = \{x \in E | s(x) = -x\}$
- 2. Réciproquement, soit $f \in \mathcal{L}(E)$. Si $f^2 = Id_E$ alors f est la symétrie par rapport à $\ker(f-Id_E)$ parallèlement à $\ker(f+Id_E)$ qui sont donc supplémentaires dans E.

Soit $n \in \mathbb{N}$, $n \geqslant 2$. L'application de transposition $T: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K}) \\ M & \mapsto & M^T \end{array} \right.$ est linéaire et vérifie que $T^2 = T$.

Ainsi T est une symétrie. C'est la symétrie par rapport à $\ker(T-Id) = \{M; M^T =$ M = $S_n(\mathbb{K})$ par rapport à $\ker(T+Id) = A_n(\mathbb{K})$. On retrouve ainsi que ces ensembles de matrices sont supplémentaires dans $\mathcal{M}_n(\mathbb{K})$.

La projection sur $S_n(\mathbb{R})$ parallèlement à $A_n(\mathbb{R})$ est alors $p = \frac{s+Id}{2} : M \mapsto \frac{M+M^T}{2}$.

Somme et somme directe

I.3.1 Définition-Proposition

Soit E un K-espace vectoriel et $F_1 \dots F_n$ des sous espaces de E.

1. La somme des espaces $(F_i)_{i\in \llbracket 1,p\rrbracket}$ est $\sum_{i=1}^p F_i=\{u_1+\cdots+u_p|\ u_1\in F_1\ \mathrm{et}\ u_2\in F_1\}$ F_2 et ... et $u_n \in F_n$. C'est le sous espace de E engendré par les F_i

2. On dit que la somme $F = \sum_{i=1}^{p} F_i$ est une somme **directe** et on note $F = \bigoplus_{i=1}^{p} F_i$ ssi tout vecteur $u \in F$ s'écrit de manière **unique** sous la forme $u = u_1 + \cdots + u_p$ avec $\forall i \in [1, p] u_i \in F_i$.

La somme et la somme directe sont associatives, ce qui permet de justifier a posteriori l'utilisation de \sum et \bigoplus

Preuve.

1. Il s'agit de montrer que $\sum_{i=1}^{n} F_i$ est un sous-espace de E et que la somme d'espace est associative. Nous allons le montrer dans le cas p=3 et on pourrait généraliser facilement (seule la formalisation est plus délicate). Montrons que

$$\underbrace{F_1 + F_2 + F_3}_{\text{cette definition}} = \underbrace{(F_1 + F_2) + F_3}_{\text{somme de deux espaces}} = \underbrace{F_1 + (F_2 + F_3)}_{\text{somme de deux espaces}}$$

Soit $x \in F_1 + F_2 + F_3$. Alors on peut écrire $x = u_1 + u_2 + u_3$ où $u_i \in F_i$ pour $i \in [1, 3]$.

Alors $x = (u_1 + u_2) + u_3 \in (F_1 + F_2) + F_3$ et $x = u_1 + (u_2 + u_3) \in F_1 + (F_2 + F_3)$ et on a prouvé deux inclusions.

Soit maintenant $x \in (F_1 + F_2) + F_3$. Alors on peut écrire $x = u + u_3$ où $u \in F_1 + F_2$ et $u_3 \in F_3$ par définition de la somme de deux espaces. Comme $u \in F_1 + F_2$, on peut écrire $u = u_1 + u_2$ où $u_1 \in F_1$ et $u_2 \in F_2$. Finalement on a bien $x \in F_1 + F_2 + F_3$.

De la même manière $F_1 + (F_2 + F_3) \subset F_1 + F_2 + F_3$ et on a bien

$$F_1 + F_2 + F_3 = (F_1 + F_2) + F_3 = F_1 + (F_2 + F_3)$$

ce qui prouve au passage que $F_1 + F_2 + F_3$ est un sous-espace de E en tant que somme de deux sous-espaces.

On a alors $F_1 + F_2 + F_3 = \text{Vect}((F_1 \cup F_2) \cup F_3) = \text{Vect}(F_1 \cup F_2 \cup F_3)$.

2. Comme la somme d'espaces est associative, la somme directe l'est aussi.

I.3.2 Lemme

Soit E un \mathbb{K} -espace vectoriel et $F_1 \dots F_p$ des sous espaces de E et notons $F = \sum_{i=1}^p F_i$

$$F = \bigoplus_{i=1}^{p} F_i \iff \psi : \left\{ \begin{array}{ccc} \prod_{i=1}^{p} F_i & \to & F \\ (u_1, \dots, u_n) & \mapsto & \sum_{i=1}^{p} x_i \end{array} \right. \text{ est un isomorphisme.}$$

Preuve.

La linéarité n'est pas difficile et comme pour I.2.5 la définition d'une somme directe est la même que la définition de la bijectivité.

On peut remarquer en plus ici qu'on a prit $F = \sum_{i=1}^{p} F_i$ comme ensemble d'arrivée et donc ψ est toujours surjective.

I.3.3 Remarque

Le cas p=2 est déjà connu. La somme F+G est directe ssi F et G sont supplémentaires dans F+G. Autrement dit

$$F + G = F \oplus G \iff F \cap G = \{0_E\}$$

I.3.4 Théorème

Soient F_1, \ldots, F_p des sous espaces de E. La somme $\sum_{i=1}^p F_i$ est directe ssi

$$\forall (u_1, \dots, u_n) \in \prod_{i=1}^p F_i \ u_1 + \dots + u_p = 0_E \iff u_1 = u_2 = \dots = u_p = 0_E.$$

Ainsi il suffit de vérifier que le vecteur nul possède une unique écriture sous forme de somme.

Preuve.

C'est une ré-écriture de $\ker(\psi) = \{0_E\}$

I.3.5 Définition-Proposition (Théorème de la base adaptée)

Soient F_1, \ldots, F_p des sous espaces de E, de dimensions finies. Notons $F = \sum_{i=1}^p F_i$.

 $F = \bigoplus_{i=1}^{p} F_i$ ssi la concaténation de bases des F_i est une base de F.

Une telle base de F est dite **adaptée** à la somme directe.

Preuve.

On procède comme pour les supplémentaires en utilisant l'application ψ .

I.3.6 Exercice

Trouver 3 espaces D_1, D_2, D_3 tels que $\mathbb{R}^3 = D_1 \oplus D_2 \oplus D_3$.

II Espaces stables

■ II.1 Endomorphisme induit

II.1.1 Définition

II Espaces stables

Soit $f \in \mathcal{L}(E)$ et F un sous-espace de E. On dit que F est stable par f ssi $f(F) \subset F$.

II.1.2 Exemple

Soit $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Montrer que $F_{\lambda} = \ker(f - \lambda i d_E)$ est stable par f. Soit $x \in F_{\lambda}$. Alors $(f - \lambda I d)(x) = 0_E$ et donc $f(x) - \lambda x = 0_E$ ou encore $f(x) = \lambda x$. Or F_{λ} est un sous-espace de E (car c'est un noyau d'endomorphisme) et donc $\lambda x \in F_{\lambda}$. Ainsi $f(x) \in F_{\lambda}$ et F_{λ} est effectivement stable par f.

II.1.3 Endomorphisme induit

Si F est stable par f alors on peut définir $f_{|F}: \left\{ \begin{array}{ccc} F & \to & F \\ x & \mapsto & f(x) \end{array} \right.$ la restriction de f à F (le détail important ici est l'espace d'arrivé qui est illégal si F n'est pas stable). Alors $f_{|F} \in \mathcal{L}(F)$.

II.1.4 Familles génératrices

Soit $F = \text{Vect}(e_1, \dots, e_p)$. F est stable par f ssi $\forall j \in [1, p] | f(e_j) \in F$. En effet $f(F) = \text{Vect}(f(e_1), \dots, f(e_p))$.

II.1.5 Proposition

Soient $f, g \in \mathcal{L}(E)$ deux endomorphismes d'un espace vectoriel E. Si $f \circ g = g \circ f$ alors $\ker(f)$ est stable par g et $\ker(g)$ est stable par f

Preuve.

Il suffit de montrer une stabilité d'après la symétrie de l'hypothèse $f \circ g = g \circ f$. Soit $x \in \ker(f)$. Montrons que $g(x) \in \ker(f)$. Or $f(g(x)) = g(f(x)) = g(0_E) = 0_E$ donc $g(x) \in \ker(f)$.

■ II.2 En dimension finie

II.2.1 Exemple Considérons l'application
$$f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x+y+z \\ x-y+z \\ x+y-z \end{pmatrix}$$
.

On pose
$$u = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
, $v = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, $w = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $F = \text{Vect}(u, v)$ et $G = \text{Vect}(w)$.

Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 , que F, G sont stables par f, calculer $\mathrm{Mat}_{(u,v)}(f_F), \mathrm{Mat}_{(v)}(f_G)$ et $\mathrm{Mat}_{\mathcal{B}}(f)$.

Réponse : Le déterminant dans la base canonique de (u, v, w) vaut -6 (faire l'opération $C_3 \leftarrow C_3 - \frac{1}{2}C_1$ pour trouver un déterminant triangulaire.) et donc \mathcal{B} est bien une base de \mathbb{R}^3 .

On a
$$f(w) = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} = -2w \in G$$
 et donc G est stable par f . De plus, $f(u) = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{2}$

$$-\frac{1}{2}u + \frac{3}{2}v \text{ (on a cherché } \alpha, \beta \in \mathbb{R} \text{ tels que } f(u) = \alpha u + \beta v \text{) et } f(v) = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \frac{3}{2}u - \frac{1}{2}v$$

et donc F est stable par f.

Ces calculs permettent d'écrire les matrices demandées

$$\operatorname{Mat}_{(u,v)}(f_{|F}) = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}, \ \operatorname{Mat}_{(w)} f_{|G} = (-2) \text{ et } \operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} & 0 \\ \frac{3}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

où les 0 sont la conséquence du fait que G est stable par f (seul w est nécessaire à l'expression de f(w)) et les 0 la conséquence de la stabilité de F par f (f(u), f(v) s'expriment en fonction de seulement u et v).

II.2.2 Théorème

Soit F un sous-espace de E, \mathcal{B}_F une base de F que l'on complète en une base \mathcal{B} de E. On note $n = \dim(E)$ et $p = \dim(F)$

F est stable par f ssi $\operatorname{Mat}_B(f)$ est de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où

- $A \in M_p(\mathbb{K})$ (et on a alors $A = \operatorname{Mat}_{\mathcal{B}_F}(f_{|F})$)
- $--B \in M_{p,n-p}(\mathbb{K})$
- $-C \in M_{n-p}(\mathbb{K})$
- 0 représente la matrice nulle de $\mathcal{M}_{n-p,p}$

Preuve.

On note $M = (m_{i,j}) = \operatorname{Mat}_{\mathcal{B}}(f) \in \mathcal{M}_n(\mathbb{K}).$

Supposons F stable par f et notons, $\mathcal{B}=(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$ (les p premiers sont dans F). Pour $j\in \llbracket 1,p \rrbracket$, on a $f(e_j)=\sum\limits_{i=1}^n m_{ij}e_i$. Les derniers termes de cette somme sont nuls car $e_j\in F$, ainsi $f(e_j)=\sum\limits_{i=1}^p m_{ij}e_i$. Ceci prouve que les n - p dernières lignes de M sont nulles dans les p premières colonnes.

Réciproquement, si M est de la forme annoncée, alors $f(e_j)$ n'a des coordonnées que sur e_1, \ldots, e_p ie est dans F, et ce pour tout $j \in [1, p]$.

II.2.3 Exemple

Donner l'interprétation géométrique de l'endomorphisme f canoniquement associé à $\begin{pmatrix} 1 & 0 \\ 0 & \cos \theta \\ 0 & \sin \theta \end{pmatrix}$

Notons $\mathcal{B}_c = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 , $D = \text{Vect}(e_1)$ et $P = \text{Vect}(e_2, e_3)$. Alors D et P sont stables par f et on a $D \oplus P = \mathbb{R}^3$ d'après le théorème de la base adaptée.

De plus, pour les vecteur de D, f est l'identité. Ainsi l'axe D est invariant par f.

De plus $f_{|P|}$ est une rotation d'angle θ du plan P. On peut interpréter f comme la rotation d'angle θ autour de l'axe D.

III Hyperplans et équations

III.1 Hyperplans

III.1.1 Définition-Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N} \setminus \{0\}$. Soit H un sous-espace de E.

 $\dim(H) = n - 1 \iff$ il existe un supplémentaire de H qui soit une droite.

Dans chacun de ces deux cas, on dit que H est un hyperplan.

Preuve.

Immédiat en appliquant le théorème de la base incomplète pour \Rightarrow .

III.1.2 Exemple

Les droites dans \mathbb{R}^2 , les plans dans \mathbb{R}^3 .

III.1.3 Droites supplémentaires

Soit H un hyperplan de E et D une droite. On a $H \oplus D = E \iff H \cap D = \{0_E\} \iff D$ n'est pas incluse dans H.

Ainsi tout vecteur $u \notin H$ dirige un supplémentaire de H.

III.1.4 Formes linéaires

Soit $f \in \mathcal{L}(E, \mathbb{K})$ une application linéaire dont l'ensemble d'arrivé est \mathbb{K} (le même que dans "E est un K-espace vectoriel"). On suppose que f n'est pas l'application nulle.

Alors $Im(f) \neq \{0_K\}$ et donc rg(f) > 0. Or, a priori, $rg(f) \leq 1$ et donc finalement rg(f) = 1. Ainsi, d'après le théorème du rang, dim(ker(f)) = n - 1

Ainsi $\ker(f)$ est un hyperplan de E. Le théorème suivant peut être vu comme réciproque de ce résultat.

III.1.5 Lemme

Soient $f, g \in \mathcal{L}(E, \mathbb{K})$ deux formes linéaires.

 $\ker(f) = \ker(g)$ ssi f et g sont proportionnelles ssi il existe $\alpha \in \mathbb{K}^*$ tel que $g = \alpha f$.

Preuve.

Remarquons que $\ker(f) = \ker(g)$ est soit un hyperplan soit E (dans le cas où $f = g = O_{\mathcal{L}(E,\mathbb{K})}$). On traite seulement le cas $\ker(f) = \ker(g) = H$ un hyperplan de E.

Soit $u \in E \setminus \{H\}$. Alors $H \oplus \text{Vect}(u) = E$. Alors $f(u) \in \mathbb{K}^*$ et $g(u) \in \mathbb{K}^*$ car un'est pas dans le noyau de ces applications.

Pour $x \in E$, notons $x = x_K + \lambda u$ où $x_K \in \ker(f)$ et $\lambda \in \mathbb{K}$. On a alors

$$g(x) = g(x_K) + \lambda g(u) = \lambda g(u) = \lambda \frac{g(u)}{f(u)} f(u) = \frac{f(u)}{g(u)} f(x)$$

En posant $\alpha = \frac{g(u)}{f(u)} \in \mathbb{K}^*$ on a bien $\forall x \in E \ g(x) = \alpha f(x)$

III.1.6 Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie n > 0 et $\mathcal{B} = (e_i)_{i \in [1,n]}$ une base de

Pour un hyperplan H il existe $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{K}^n$ non nul tel qu'une équation de H dans la base \mathcal{B} soit $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ ce qui signifie que $x \in E$ de coordonnées

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 (dans \mathcal{B}) appartient à H ssi $a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$.

Toutes les autres équations de H dans \mathcal{B} sont proportionnelles à celle-ci.

Preuve.

— Soit (u_1,\ldots,u_{n-1}) une base de H. Soit $x\in E$

On a alors $x \in E \iff x \in \text{Vect}(u_1, \dots, u_{n-1}) \iff (u_1, \dots, u_{n-1}, x) \text{ est}$ liée \iff det_B $(x, u_1, \dots, u_{n-1}) = 0.$

Si on développe ce déterminant par rapport à la première colonne, on obtient bien une équation de la forme $x_1 \times a_1 + \cdots + x_n \times a_n = 0$ où a_1, \ldots, a_n sont des déterminants de taille n-1 composés de coordonnées des vecteurs u_i .

On doit maintenant prouver que $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ c'est à dire qu'au moins un

 $x \in E$ vérifieraient l'équation précédente et on aurait $E \subset H$ ce qui n'est pas par un argument de dimension.

Il nous reste à montrer que toute autre équation de H dans \mathcal{B} est proportionnelle à l'équation trouvée ici (qui, a priori, dépend au moins du choix de la base de H).

Notons $f: \left\{ \begin{array}{ccc} E & \to & \mathbb{K} \\ x & \mapsto & \sum\limits_{i=1}^n a_1 x_i \end{array} \right.$. Il s'agit d'une forme linéaire dont le noyau

est H. Une autre équation de H est donnée par $g \in \mathcal{L}(E, \mathbb{K})$ telle que $\ker(g) =$ $H = \ker(f)$. Par les lemme précédent $g = \alpha f$ et les équations sont bien proportionnelles.

III.2Systèmes d'équations

III.2.1 Exemple Donner l'interprétation géométrique de l'ensemble des solutions de $\begin{cases} 2x+y-z=0\\ x+2y+z=0 \end{cases}$

Il s'agit d'une droite vue comme intersection de deux plans de l'espace.

III.2.2 Système et théorème du rang

On considère un système linéaire homogène à n équations et p inconnues noté matriciellement AX = 0 où l'inconnue est $X \in \mathbb{K}^p$ et $A \in \mathcal{M}_{n,p}$.

L'ensemble des solutions est $\ker(A)$ qui est de dimension $p-\operatorname{rg}(A)$. Cette dimension est exactement le nombre de paramètres à poser pour résoudre ce système. rg(A) est le nombre d'équations restantes une fois le système échelonné.

III.2.3 Intersection d'hyperplans

Soient $H_1, \ldots H_p$ des hyperplans de E de dimension $n \ge p$ et \mathcal{B} une base de E. L'intersection $H_1 \cap H_2 \cap \cdots \cap H_p$ est l'ensemble des solutions d'un système S à n inconnues (les coordonnées dans \mathcal{B}) et p équations. Le rang de S est au maximum p donc l'ensemble des solutions (notre intersection) est de dimension au moins n-p.

Quel est le cas d'égalité pour les dimensions?

III.2.4 Théorème

Soit E de dimension n > 0 et $p \leq n$.

- 1. l'intersection de p hyperplans de E est de dimension au moins n-p.
- 2. réciproquement, tout sous-espace de dimension p est l'intersection de n-p hyperplans (et possède donc un système d'équation à n-p équations et n inconnues dans une base fixée de E).

Preuve.

Il nous reste à prouver le deuxième point.

Soit F un sous-espace de E de dimension p. Notons (e_1, \ldots, e_p) une base de F et complétons cette base en $\mathcal{B} = (e_1, \ldots, e_n)$. Soit $x \in E$ et $\begin{pmatrix} x_1 \\ x_n \end{pmatrix}$ ses coordonnées

dans \mathcal{B} . Alors $x \in F \iff x_{p+1} = 0 \text{ et } \dots \text{ et } x_n = 0$.

Si on note H_i : $x_i = 0$ pour $i \in [p+1, n]$ des hyperplans décrits par leurs équations dans \mathcal{B} , alors $F = \bigcap_{i=p+1}^n H_i$. On obtient bien n-p hyperplans ie. n-p équations.

Index

Espaces supplémentaires, 3

Produit

d'espaces vectoriels, 1

Projecteur, 4

Somme

de deux espaces, 2

Symétrie, 4

Théorème de la base adaptée, 3