Devoir maison 6

A rendre le au plus tard le 08/11/2022.

Exercice 1

Posons $n \in \mathbb{N} \setminus \{0\}$.

- 1. On note $G = \{AB BA | (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2\} = \{C \in \mathcal{M}_n(\mathbb{K}) | \exists (A, B) \in \mathcal{M}_n(\mathbb{K})^2 | C = AB BA\} \text{ et } F = \text{Vect}(G).$
 - (a) Donner un exemple explicite d'une matrice non nulle de G dans le cas n=2.
 - (b) Montrer que $G \subset \ker(\operatorname{tr})$ puis $F \subset \ker(\operatorname{tr})$.
 - (c) On note $E_{i,j}$ les matrices de la base canonique de $\mathcal{M}_n(\mathbb{K})$. Calculer $E_{i,j}E_{k,l}$ pour $i,j,k,l \in [1,n]$.
 - (d) Soient $i, j \in [1, n]$ des entiers distincts. Montrer que $E_{i,i} E_{j,j} \in G$ et $E_{1,i} \in G$ (dans le cas $i \neq 1$ pour la deuxième).
 - (e) Qu'en déduire pour la dimension de F? On traitera d'abord les cas n=2 et n=3.
 - (f) Déterminer $\dim(\ker(\operatorname{tr}))$ et en déduire que $F = \ker(\operatorname{tr})$.
 - (g) Est-ce que $I_n \in F$?
- 2. On note $E = \{ f \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K}) | \forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2 \ f(AB) = f(BA) \}$. Les éléments de E sont ainsi des formes linéaires.
 - (a) Rappeler la dimension de $\mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$.
 - (b) Montrer que E est un \mathbb{K} -espace vectoriel. Donner en plus un élément non nul de E.
 - (c) Soit $f \in E$. Montrer que $\ker(\operatorname{tr}) \subset \ker(f)$.
 - (d) En déduire qu'il existe $\lambda \in \mathbb{K}$ tel que $f = \lambda$ tr.
 - (e) Déterminer une base et la dimension de E.

Cet exercice démontre un résultat intéressant : la propriété qui permet de montrer que deux matrices semblables ont la même trace (aller re-jeter un oeil à ce cours par la même occasion) est en fait caractéristique de la trace parmi les formes linéaires (à une constante multiplicative près, seule la trace possède cette propriété).

Exercice 2 (Révisions sur les séries)

On définit deux suites par : $\begin{cases} \forall n \geqslant 1 \ H_n = \sum\limits_{k=1}^n \frac{1}{k} \\ \forall n \geqslant 2 \ a_n = \frac{1}{n} H_{n-1} \end{cases}$

- 1. Rappeler la limite de (H_n) .
- 2. Étudier la nature de $\sum a_n$.
- 3. Étudier la nature de $\sum (-1)^n a_n$.
- 4. Montrer que $\forall x \in]-1,1[\sum a_n x^n \text{ converge.}]$
- 5. Montrer que $\forall x \in]-1,1[\sum H_n x^n \text{ converge. On note } S(x)=\sum_{n=1}^{+\infty}H_n x^n \text{ pour } x \in]-1,1[.$
- 6. Pour $x \in]-1,1[$, exprimer (1-x)S(x) sous la forme $\sum b_n x^n$ (où b_n est un coefficient, à trouver) et intuiter la valeur de S(x).

Indications:

Exercice 1

- 1. Les éléments de F sont des combinaisons linéaires d'éléments de G.
 - (a) Il s'agit de trouver un exemple de matrice M de G, c'est à dire des matrices A, B telles que $M = AB BA \neq 0$.
 - (b) La deuxième inclusion est une conséquence directe de la première. Pour la première, nous avons une méthode très générale pour montrer une inclusions : Soit $C \in G$. Montrons que $C \in \ker(\operatorname{tr})...$
 - (c)
 - (d) Il faut trouver à chaque fois des matrices A et B convenables.
 - (e) On doit trouver une inégalité pour la dimension, à chaque fois.
 - (f) On veut la dimension d'un noyau. Deux méthodes : expliciter ce noyau en résolvant une équation homogène ou utiliser un théorème...
 - (g)
- 2. (a)
 - (b) Montrer que c'est un sous-espace de $\mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$.
 - (c) Encore une inclusion
 - (d) Attention à utiliser correctement le résultat du cours.
 - (e) On vient de décrire tous les éléments de E....

Exercice 2

- 1. C'est une série connue.
- 2. On trouve une série divergente.
- 3. La forme de la série donne le théorème à utiliser.
- 4. Attention à l'hypothèse à vérifier pour appliquer d'Alembert.
- 5.
- 6. On pourra développer et faire un changement d'indice. Pour intuiter la valeur de S(x) on pourra reconnaître les sommes partielles de la série précédente comme partie polynomiale d'un DL connu.