PT 22-23 1/4

Table des matières

Ι	Ray	on de convergence	1
	I.1	Série entière	1
	I.2	Convergence d'une série entière	1
	I.3	Calcul du rayon de convergence	2
		d'Alembert	
II	Pro	priétés de la somme, cas réel	2
	II.1	Intégration	2
	II.2	Dérivation	3
II	IDév	veloppement en série entière	3
	III.1	Fonctions développables	3
	III.2	Développements en pratique	3
		III.2.1 Formulaire	

I Rayon de convergence

I.1 Série entière

Définition 1

- Une série entière de variable $z \in \mathbb{K}$ est une série de la forme $\sum a_n z^n$ où $a_n \in \mathbb{K}$.
- Les termes de la suite $(a_n)_{n\in\mathbb{N}}$ sont appelés les coefficients de la série entière.
- Pour chaque $z_0 \in \mathbb{K}$ on étudie la convergence de la série numérique $\sum a_n z_0^n$. L'ensemble des $z_0 \in \mathbb{K}$ pour lesquels la série entière converge est appelé domaine de convergence.
- La somme de cette série entière est la **fonction** $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ définie sur le domaine de convergence.

Lorsque la variable est réelle, on la note x plutôt que z.

Proposition 1 (Rappel)

Soit $(b_n) \in \mathbb{C}^{\mathbb{N}}$ une suite de nombres complexes.

$$b_n \underset{n \to +\infty}{\to} 0 \iff |b_n| \underset{n \to +\infty}{\to} 0$$

I.2 Convergence d'une série entière

Théorème 1 (Lemme d'Abel)

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$. Supposons qu'il existe r > 0 tel que $(|a_n|r^n)$ est une suite bornée. Alors pour tout $z \in D_r$ (ie |z| < r)

$$|a_n z^n| = O_{+\infty}\left(\left(\frac{|z|}{r}\right)^n\right)$$
 et donc $\sum_{n \in \mathbb{N}} a_n z^n$ converge.

Définition-Proposition 1

Soit $\sum a_n z^n$ une série entière.

- 1. L'ensemble $I = \{r \in \mathbb{R}^+ | (|a_n|r^n)_{n \in \mathbb{N}} \text{ est bornée} \}$ est un intervalle de \mathbb{R} de la forme [0, a) (la deuxième borne est ouverte ou fermée, finie ou non)
- 2. $R = \sup(I) \in \mathbb{R}^+ \cup \{+\infty\}$ est appelé rayon de convergence de la série entière $\sum_{n \in \mathbb{N}} a_n z^n$

Théorème 2

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0.

- 1. Si |z| < R alors la série numérique $\sum a_n z^n$ converge absolument donc converge.
- 2. Si |z| > R alors la série numérique $\sum a_n z^n$ diverge grossièrement.
- 3. Si |z| = R on ne peut pas conclure a priori sur la nature de $\sum_{n \in \mathbb{N}} a_n z^n$.

2/4 PT 22-23

I.3 Calcul du rayon de convergence

Proposition 2

Soient $\sum a_n z^n$ une série entière de rayon de convergence R_a et $\sum b_n z^n$ une série entière de rayon de convergence R_b

- 1. Si $|a_n| \leq |b_n|$ (au moins à partir d'un certain rang), alors $R_a \geq R_b$
- 2. Si $a_n = O_{+\infty}(|b_n|)$ alors $R_a \geqslant R_b$ (en particulier dans le cas $a_n = o_{+\infty}(|b_n|)$).
- 3. Si $|a_n| \underset{+\infty}{\sim} |b_n|$ alors $R_a = R_b$.

Théorème 3

Soient $\sum a_n z^n$ une série entière de rayon de convergence R_a et $\sum b_n z^n$ une série entière de rayon de convergence R_b .

- 1. Pour $\lambda \in \mathbb{C}^*$, la série entière $\sum \lambda a_n z^n$ est de rayon de convergence R_a . Le cas $\lambda = 0$ donne un rayon infini.
- 2. Le rayon de convergence R de la série $\sum (a_n + b_n)x^n$ vérifie $R = \min(R_a, R_b)$ si $R_a \neq R_b$ et $R \geqslant R_a$ dans le cas $R_a = R_b$.
- 3. Le rayon de convergence R de la série entière $\sum c_n x^n = \sum a_n x^n \times \sum b_n x^n$ vérifie $R \geqslant \min(R_a, R_b)$.

Proposition 3

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$. Les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont le même rayon de convergence.

I.4 d'Alembert

Théorème 4 (Règle de d'Alembert)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N} \ u_n > 0$. Supposons que $\frac{u_{n+1}}{u_n} \to \ell$.

- 1. Si $\ell < 1$ alors $\sum u_n$ converge (on a même $\forall q \in]\ell, 1[\ u_n = o_{+\infty}(q^n))$.
- 2. Si $\ell > 1$ alors $\sum u_n$ diverge grossièrement (car $u_n \to +\infty$).
- 3. Si l=1 la série $\sum u_n$ peut être divergente ou convergente.

Proposition 4

Soit $\sum a_n z^n$ une série entière. On suppose que $a_n \neq 0$ (au moins à partir d'un certain rang).

Si
$$\left(\frac{|a_{n+1}|}{|a_n|}\right)$$
 admet une limite $\ell \in \mathbb{R}^+ \cup \{+\infty\}$, alors le rayon de convergence de $\sum a_n z^n$ est :

- 0 dans le cas $\ell = +\infty$
- $+\infty$ dans le cas $\ell=0$
- $\frac{1}{\ell}$ dans le cas $\ell \in]0, +\infty[$.

II Propriétés de la somme, cas réel

II.1 Intégration

Théorème 5

Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ la somme d'une série entière de rayon de convergence R > 0. Alors f est continue sur son domaine de convergence (qui inclut]-R,R[et peut être éventuellement fermé en $\pm R$).

Théorème 6 (Intégration terme à terme)

Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ la somme d'une série entière de rayon de convergence R > 0.

$$\forall x \in]-R, R[\int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} x^n$$

Remarquons que les séries entières qui interviennent ici sont de rayon de convergence R exactement d'après 3

PT 22-23 3/4

II.2 Dérivation

Théorème 7 (Dérivation terme à terme)

Soit f la somme de la série entière $\sum a_n x^n$ de rayon de convergence R > 0.

f est de classe \mathcal{C}^{∞} sur]-R,R[et pour $x\in]-R,R[$ on a

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n.$$

et plus généralement

$$\forall k \in \mathbb{N} \forall x \in]-R, R[f^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k} = \sum_{n=0}^{+\infty} \frac{(n+k)!}{n!} a_{n+k} x^n$$

Remarquons que les série entière qui définissent f' et les $f^{(k)}$ sont également de rayon de convergence R.

Corollaire 1

Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0 et f sa somme. Alors $a_n = \frac{f^{(n)}(0)}{n!}$ pour tout $n \in \mathbb{N}$.

Corollaire 2 ("Identification" (unicité) des coefficients)

Les coefficients d'une série entière de rayon non nul sont uniques.

Plus précisément, si $\sum a_n x^n$ et $\sum b_n x^n$ sont de rayons non nuls et vérifient pour un $\alpha > 0$ que

$$\forall x \in]-\alpha, \alpha [\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} b_n x^n$$

alors $\forall n \in \mathbb{N} \ a_n = b_n$.

III Développement en série entière

III.1 Fonctions développables

Définition 2

Soit f une fonction de classe C^{∞} sur I tel que $0 \in I$ et 0 n'est pas une borne de I. Le **développement de Taylor** de f est la série entière $\sum \frac{f^{(n)}(0)}{n!} x^n$.

Définition 3

Soit $f: I \to \mathbb{K}$ où I est intervalle qui contient 0 (et 0 n'est pas une borne de I). On dit que f est **développable en série** entière (au voisinage de 0) ssi il existe r > 0 et une série entière $\sum a_n x^n$ tels que :

$$\begin{array}{ll} - &] - r, r [\subset I \\ - & \sum_{n \in \mathbb{N}} a_n x^n \text{ est de rayon } R \geqslant r \end{array}$$

$$-- \forall x \in]-r, r[f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Autrement dit, f est la somme d'une série entière sur un intervalle $]-r,r \neq \emptyset$ contenu dans I.

La série entière $\sum a_n x^n$ est appelée **développement en série entière** de f.

III.2 Développements en pratique

Proposition 5

sin et cos sont développable en série entière sur \mathbb{R} et pour tout $x \in \mathbb{R}$

$$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ et } \sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

Proposition 6

sh et ch sont développable en série entière sur $\mathbb R$ et pour tout $x \in \mathbb R$

$$\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} x^{2n} \text{ et } \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} x^{2n+1}$$

4/4 PT 22-23

Proposition 7

Soit $\alpha \in \mathbb{R}$. $f_{\alpha} : x \mapsto (1+x)^{\alpha}$ est développable en série entière sur]-1,1[et

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n$$

Le coefficient de x^n est un quotient d'un produit de n termes par n!.

Si $\alpha \in \mathbb{N}$, le rayon de convergence est $+\infty$ et le développement est en fait une somme finie.

III.2.1 Formulaire

A savoir	
$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$	$x \in]-1,1[$
$\ln(1+x) = \sum_{n=1}^{n=0} \frac{(-1)^{n-1}}{n} x^n$	$x\in]-1,1[$
$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n$	$x\in]-1,1[$
$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\prod\limits_{k=0}^{n-1} (\alpha - k)}{n!} x^n$	$x\in]-1,1[$
$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$	$x \in \mathbb{R}$
$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}$	$x \in \mathbb{R}$
$\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	$x \in \mathbb{R}$
$\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$	$x \in \mathbb{R}$
$sh(x) = \sum_{n=0}^{n=0} \frac{x^{2n+1}}{(2n+1)!}$	$x \in \mathbb{R}$
A savoir refaire	
$-\ln(1-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$	$x\in]-1,1[$
$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n$	$x\in]-1,1[$
$\arcsin(x) = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{(2n+1)4^n} x^{2n+1}$	$x\in]-1,1[$
$\arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$	$x \in]-1,1[$