PT 22-23 1/4

Table des matières

Ι	Elements propres	1
	I.1 Valeurs et vecteurs propres	1
	Espaces propres	1
	I.3 Stabilité (\star)	
II	En dimension finie	2
	II.1 Polynôme caractéristique	2
	II.2 Lien avec les valeurs propres	2
II	Diagonalisation	3
	III.1 Diagonalisabilité	3
	III.2 Applications	3
I	Trigonalisation	3
	IV.1 Théorie	3
	IV.2 Conséquences pratiques	
	IV.3 Deviner la dernière valeur propre	

I Elements propres

I.1 Valeurs et vecteurs propres

Définition 1 (Valeur propre et vecteur propre)

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

Soit $\lambda \in \mathbb{K}$. On dit que λ est une valeur propre de f ssi il existe un $x \in E$ non nul tel que $f(x) = \lambda x$. Un tel x non nul est appelé un vecteur propre de f associé à la valeur propre λ .

L'ensemble des valeurs propres de f est appelé le spectre de f et noté Sp(f).

Définition 2 (Vecteur propre et valeur propre)

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

Soit $x \in E$. On dit que x est un vecteur propre de f ssi

$$\begin{cases} x \neq 0_E \\ \exists \lambda \in \mathbb{K} \quad f(x) = \lambda x \end{cases}$$

On dit que x est associé à la valeur propre λ .

Proposition 1

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E)$.

Soit $\lambda \in \mathbb{K}$. Alors on a

 λ est une valeur propre de $f \iff \ker(f - \lambda Id_E) \neq \{0_E\}$

Définition 3

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Soit $\lambda \in \mathbb{K}$. On dit que λ est une valeur propre de A ssi il existe un $X \in \mathbb{K}^n$ non nul tel que $AX = \lambda X$. Un tel X non nul est appelé un vecteur propre de f associé à la valeur propre λ .

En résumé : les valeurs propres et vecteurs propres de A sont les valeurs propres et vecteurs propres de l'application linéaire canoniquement associée à $A, f_A : \left\{ \begin{array}{ccc} \mathbb{K}^n & \to & \mathbb{K}^n \\ X & \mapsto & AX \end{array} \right.$

On note $Sp(A) = Sp(f_A)$ le spectre de A (l'ensemble de ses valeurs propres)

I.2 Espaces propres

Définition 4

1. Soit $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$ une valeur propre de f. L'espace propre associée à λ est l'espace $E_{\lambda}(f) = \ker(f - \lambda I d_E) = \ker(\lambda I d_E - f) \neq \{0_E\}$.

Il s'agit de l'ensemble composé du vecteur nul et de tous les vecteurs propres associés à λ . On le note parfois aussi E_{λ} .

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ une valeur propre de A. L'espace propre associée à λ est l'espace $E_{\lambda}(A) = \ker(A - \lambda I_n) = \ker(\lambda I_n - A) \neq \{0_{\mathbb{K}^n}\}.$

2/4 PT 22-23

Théorème 1

Soit $f \in \mathcal{L}(E)$ et $\lambda_1, \ldots \lambda_p$ des valeurs propres 2 à 2 distinctes de f. Pour $i \in [1, p]$ on pose v_i un vecteur propre associé à λ_i (il est donc non nul).

La famille (v_1, \ldots, v_p) est libre.

Théorème 2

Soit $f \in \mathcal{L}(E)$ et $\lambda_1, \ldots \lambda_k$ des valeurs propres 2 à 2 distinctes de f.

La somme
$$\sum_{i=1}^{k} E_{\lambda_i}(f)$$
 est directe ie $\sum_{i=1}^{k} E_{\lambda_i} = \bigoplus_{i=1}^{k} E_{\lambda_i}$

I.3 Stabilité (*)

Proposition 2

Soit $f \in \mathcal{L}(E)$.

Si D est une droite de E stable par f, alors D est dirigée par un vecteur propre de f.

Proposition 3

Soit $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$ une valeur propre de f. Alors $E_{\lambda}(f)$ est stable par f.

Proposition 4

Soient $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$.

- 1. ker(f) et Im(f) sont stables par g.
- 2. Tout espace propre de f est stable par g.

Evidemment, on peut échanger les rôles de f et g dans ces résultats.

Proposition 5

Soient $f, g \in \mathcal{L}(E)$. On suppose $f \circ g = g \circ f$.

Toute droite propre de f est aussi une droite propre pour g et toute droite propre pour g est une droite propre pour f.

II En dimension finie

II.1 Polynôme caractéristique

Définition-Proposition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique de A est le polynôme χ_A associée à la fonction $\chi_A : \begin{cases} \mathbb{K} \to \mathbb{K} \\ x \mapsto \det(xI_n - A) \end{cases}$. χ_A est un polynôme **unitaire** (son coefficient dominant est 1) de **degré** n, la taille de A.

Proposition 6

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le coefficient constant de χ_A est $(-1)^n \det(A)$ et le coefficient de X^{n-1} est $-\operatorname{tr}(A)$. Ainsi

$$\chi_A(X) = X^n - \text{tr}(A)X^{n-1} + \dots + (-1)^n \det(A)$$

Ce résultat est également valable pour les endomorphismes.

Définition 5

Soit $f \in \mathcal{L}(E)$, où E est de dimension n. Le polynôme caractéristique χ_f de f est le polynôme associé à l'application $x \mapsto \det(xId_E - f)$. C'est un polynôme unitaire de degré n.

Si A est la matrice de f dans une base \mathcal{B} quelconque de E alors $\chi_f = \chi_A$.

II.2 Lien avec les valeurs propres

Théorème 3

Soit $f \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$. Soit $\lambda \in \mathbb{K}$

- 1. λ est une valeur propre de f ssi $\chi_f(\lambda) = 0$ ie λ est une racine de χ_f .
- 2. λ est une valeur propre de A ssi $\chi_A(\lambda) = 0$ ie λ est une racine de χ_A .

Théorème 4 (Rappel : d'Alembert-Gauss)

Soit $P \in \mathbb{C}[X]$.

- Si P est non constant, alors P possède un moins une racine dans \mathbb{C} .
- Si P est non nul, il possède exactement autant de racine dans \mathbb{C} (comptées avec multiplicités) que son degré. On dit que P est **scindé**.

Conséquence ici : Toute matrice $A \in M_n(\mathbb{C})$ possède au moins une valeur propre.

PT 22-23 3/4

Proposition 7 (Déterminant triangulaire par bloc)

Soit $M \in \mathcal{M}_n(\mathbb{K})$ de la forme $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où A, C sont des matrices carrées (de tailles quelconques, y compris 1). Alors $\det(M) = \det(A) \det(C)$.

Théorème 5

Soit $f \in \mathcal{L}(E)$ et $\lambda \in Sp(f)$. Notons $\mu(\lambda)$ la multiplicité de λ comme racine de χ_f (on appelle cette quantité la multiplicité de la valeur propre λ).

$$1 \leqslant \dim(E_{\lambda}(f)) \leqslant \mu(\lambda)$$

Corollaire 1

Si λ est une racine simple de χ_A ou χ_f , alors E_{λ} est une droite.

III Diagonalisation

III.1 Diagonalisabilité

Définition 6

- 1. Soit $f \in \mathcal{L}(E)$. On dit que f est diagonalisable ssi il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(f)$ est diagonale.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est diagonalisable ssi A est semblable à une matrice diagonale (il existe une matrice inversible P et une matrice diagonale D telles que $D = P^{-1}AP$ et $A = PDP^{-1}$.)

Proposition 8

Soit $f \in \mathcal{L}(E)$. f est diagonalisable ssi il existe une base \mathcal{B} de E composée de vecteurs propres de f.

Dans ce cas $\operatorname{Mat}_{\mathcal{B}}(f)$ est diagonale et sa diagonale est composée des valeurs propres de f associées aux vecteurs propres de \mathcal{B} (les valeurs propres sont dans l'ordre des vecteurs de \mathcal{B}).

Proposition 9

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

A est diagonalisable ssi il existe une base \mathcal{B} composée de vecteurs propres de A. En notant \mathcal{B}_c la base canonique de \mathbb{K}^n et $P = \operatorname{Mat}_{\mathcal{B}_c} \mathcal{B}$ la matrice dont les colonnes sont les vecteurs propres de A on a

$$D = P^{-1}AP$$
 est diagonale

et la diagonale de D est composée des valeurs propres de A associées respectivement aux vecteurs propres de $\mathcal B$ (dans le même ordre).

On a alors $A = PDP^{-1}$.

Théorème 6

Soit
$$f \in \mathcal{L}(E)$$
. f est diagonalisable ssi $\bigoplus_{\lambda \in Sp(f)} E_{\lambda} = E$.

Théorème 7

Soit $f \in \mathcal{L}(E)$.

f est diagonalisable sur \mathbb{K} ssi χ_f est scindé sur \mathbb{K} et pour tout $\lambda \in Sp(f)$ on a $\dim(E_\lambda) = \mu(\lambda)$ (la multiplicité de λ en tant que racine de χ_f).

Proposition 10

Soit $f \in \mathcal{L}(E)$. SI χ_f est scindé sur \mathbb{K} et à racines simples ALORS f est diagonalisable.

III.2 Applications

Théorème 8

Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$ une suite et $p \geqslant 1$. On suppose qu'il existe $a_0, \ldots, a_{p-1} \in \mathbb{K}$ tels que $\forall n \in \mathbb{N}$ $u_{n+p} = \sum_{k=0}^{p-1} a_k u_{n+k}$.

- 1. Le polynôme $P = -\sum_{k=0}^{p-1} a_k X^k + X^p$ est appelé polynôme caractéristique de (u_n) .
- 2. Si P est scindé à racines simples, notées $\lambda_1,\ldots,\lambda_p$ alors il existe des scalaires $\alpha_1,\ldots\alpha_p$ tels que

$$\forall n \in \mathbb{N} \ u_n = \sum_{k=1}^p \alpha_k \lambda_k^n$$

.

4/4 PT 22-23

IV Trigonalisation

IV.1 Théorie

Théorème 9

Soit $f \in \mathcal{L}(E)$. χ_f est scindé sur \mathbb{K} ssi il existe une base \mathcal{B} telle que $\mathrm{Mat}_{\mathcal{B}}(f)$ est triangulaire supérieure (on dit que f est trigonalisable).

La diagonale est constituée de toutes les racines de χ_f , avec multiplicité (une racine de multiplicité r apparaît r fois sur cette diagonale).

Corollaire 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est trigonalisable dans \mathbb{C} ie il existe $P \in GL_n(\mathbb{C})$ telle que PAP^{-1} est triangulaire supérieure.

IV.2 Conséquences pratiques

Proposition 11

Soit $f \in \mathcal{L}(E)$ et $\lambda_1, \ldots, \lambda_n$ les racines (complexes) de χ_f non nécessairement distinctes.

1.
$$\operatorname{tr}(f) = \sum_{k=1}^{n} \lambda_k$$

$$2. \det(f) = \prod_{k=1}^{n} \lambda_k$$

Le même résultat vaut pour les matrices.

IV.3 Deviner la dernière valeur propre