TD 6: réduction

Elements propres

Exercice 1

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

- 1. Montrer que si λ est valeur propre de f alors λ^k est valeur propre de f^k pour tout $k \in \mathbb{N}$.
- 2. Montrer que f est inversible (bijective) si et seulement si 0 n'est pas valeur propre de f. Dans ce cas, déterminer les valeurs propres de f^{-1} en fonction de celles de f.
- 3. Si f est nilpotent (il existe un entier p > 0 tel que $f^p = 0_{\mathcal{L}(E)}$), montrer que la seule valeur propre de f est 0.

Exercice 2 (Cours)

Soit E un espace vectoriel de dimension finie. Déterminer les éléments propres d'un projecteur de E et de la symétrie associée.

Exercice 3 Soient $f: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & XP' \end{array} \right.$ et $\varphi: \left\{ \begin{array}{ccc} \mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}) & \to & \mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}) \\ f & \mapsto & f'' \end{array} \right.$. Déterminer les éléments propres de f et φ (valeurs propres, espaces propres associés)

Exercice 4

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^p = I_n$ pour un $p \in \mathbb{N} \setminus \{0\}$. Déterminer les valeurs propres possibles de A.

Exercice 5

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Si A n'est pas une homothétie et si A n'admet qu'une seule valeur propre, montrer que A n'est pas diagonalisable.
- 2. Dire si les matrices suivantes sont diagonalisables :

$$B = \begin{pmatrix} 1 & 6 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

3. Un endomorphisme nilpotent est-il diagonalisable?

Exercice 6

Déterminer les coefficients inconnus de la matrice suivante

$$A = \begin{pmatrix} 1 & b & c \\ 2 & b' & c' \\ 3 & b'' & c'' \end{pmatrix}$$

pour qu'elle admette pour vecteurs propres (1,0,1), (-1,1,0) et (0,1,-1). Quelles sont alors les valeurs propres?

Exercice 7

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que A et A^T ont les mêmes valeurs propres.

Exercice $8 (\star)$

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = BA. On suppose de plus que A possède n valeurs propres distinctes (et donc...). Montrer que B est diagonalisable via la même base.

Diagonalisabilité

Exercice 9

Soit $f \in \mathcal{L}(E)$ où E est de dimension finie. On suppose que f est diagonalisable et que $Sp(f) = \{0, 1\}$. Montrer que f est un projecteur.

Enoncer un résultat similaire pour les symétries.

Exercice 10

Les matrices suivantes sont-elles diagonalisables sur \mathbb{R} ? sur \mathbb{C} ? Si oui, déterminer une base de vecteurs propres.

$$A = \begin{pmatrix} 4 & 1 \\ 0 & -1 \end{pmatrix}; \quad B = \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix}; \quad C = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}; \quad D = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix};$$

Exercice 11 Pour $n \in \mathbb{N} \setminus \{0\}$ on pose $A_n = \begin{pmatrix} 1 & \frac{1}{n} & \frac{1}{n} \\ -\frac{1}{n} & \frac{n+2}{n} & \frac{1}{n} \\ \frac{1}{n} & -\frac{1}{n} & 1 \end{pmatrix}$

- 1. Sans calculer de polynôme caractéristique, montrer que 1 et $1 + \frac{1}{n}$ sont valeurs propres de A_n .
- 2. La matrice A_n est-elle diagonalisable? Inversible?
- 3. On note $B_n = A_1 A_2 \dots A_n$. La matrice B_n est-elle diagonalisable? Inversible? Si oui, exhiber B_n^{-1} .

Exercice 12

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} u_0 = u_1 = u_2 = 1 \\ u_{n+3} = 20u_n - 24u_{n+1} + 9u_{n+2} \end{cases}$$

Exprimer u_n en fonction de n.

TD 6: réduction 2/2

- Exercice 13
 1. Diagonaliser $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 9 \end{pmatrix}$.
 - 2. Résoudre l'équation $X^2=\begin{pmatrix}1&1&1\\0&4&1\\0&0&9\end{pmatrix}$ dans $\mathfrak{M}_3(\mathbb{C}).$ On commencera par donner des solutions ¹ puis vérifier que ce sont les seules ².

Exercice 14

Soient A et B deux matrices carrées d'ordre n complexes vérifiant $A = B^2$; les assertions suivantes sont-elles vraies?

Indication: on pensera aux endomorphismes/matrices dont on sait s'il sont diagonalisable ou pas : projecteur, symétrie, nilpotent.

- 1. Si B est diagonalisable, A l'est aussi.
- 2. Si A est diagonale, B l'est aussi.
- 3. Si A est diagonalisable, B l'est aussi.
- 4. Si $A = \lambda$ id avec $\lambda \neq 0$ alors B est diagonalisable.
- 5. (\star) Si A est diagonalisable et inversible, B est diagonalisable.

Approfondissement

Exercice 15 A quelles conditions portant sur α , β , la matrice $A = \begin{pmatrix} 0 & \alpha & \beta \\ \alpha & 0 & \beta \\ \alpha & \beta & 0 \end{pmatrix}$ est-elle diagonalisable?

Exercice 16

On considère $A \in \mathcal{M}_n(\mathbb{R})$ définie par $A = (a_{i,j})_{(i,j) \in [1,n]^2}$ où $a_{i,j} = \frac{i}{i}$. Montrer que A est diagonalisable. Indication : calculer le rang de A.

Exercice 17 Soit
$$E = \mathbb{R}[X]$$
 et $\varphi : \left\{ \begin{array}{ccc} E & \to & E \\ P & \mapsto & (X-1)(X-2)P'-2XP \end{array} \right.$

- 1. Montrer que $\varphi \in \mathcal{L}(E)$.
- 2. Montrer que si $P \in E$ est vecteur propre de φ alors $\deg(P) = 2$.
- 3. Déterminer les éléments propres de φ .
- 1. Plutôt facile
- 2. Plus difficile

Exercice 18 (Important) Soit $f \in \mathcal{L}(E)$ avec E de dimension finie. Soit $P \in \mathbb{K}[X], P = \sum_{k=0}^{n} a_k X^k$. On note $P(f) = \sum_{k=0}^{n} a_k f^k$ (attention à la puissance 0).

Montrer que si $\lambda \in Sp(f)$ et $P(f) = 0_{\mathcal{L}(E)}$ alors $P(\lambda) = 0_{\mathbb{K}}$. Trouver dans les exercices précédents 2 exemples de ce résultat

Exercice 19

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

- 1. Calculer A^3 et en déduire les valeurs propres possible de A.
- 2. Donner les espaces propres de A.
- 3. Soient $a, b, c \in \mathbb{C}$ et $M = \begin{pmatrix} c & b & a \\ a & c & b \\ b & a & c \end{pmatrix}$. Diagonaliser M.

Exercice 20

Soit $n \in \mathbb{N} \setminus \{0\}$. Pour $P \in E = \mathbb{R}_n[X]$, on pose f(P) = X(1-X)P' + nXP

- 1. Montrer que $f \in \mathcal{L}(E)$.
- 2. Déterminer les valeurs propres et vecteurs propres de f en résolvant une équation différentielle.
- 3. f est-elle diagonalisable?