Exercice 1

On considère dans cet exercice des dés à 6 faces parfaitement équilibrés.

- 1. Montrer que la probabilité d'obtenir au moins un 6 en lançant 4 dés est supérieurs à $\frac{1}{2}$.
- 2. Montrer que la probabilité d'obtenir un double 6 en lançant 24 fois 2 dés est inférieure à $\frac{1}{2}$.

Exercice 2

Dans une usine deux machines fabriquent le même objet. La première machine a une probabilité p_1 de fabriquer un objet défectueux, la seconde une probabilité p_2 .

On choisit une caisse au hasard d'objets fabriqués avec une même machine (on ne sait pas laquelle a priori). Le premier objet testé est totalement fonctionnel. Quelle est la probabilité pour que le second objet testé le soit également?

Exercice 3

On souhaite tester le sang de N personnes à la recherche d'un virus dont on sait qu'il affecte une personne avec une probabilité $p \in]0,1[$, indépendamment des autres. Pour réaliser ces tests on à la choix entre deux protocoles :

- Méthode 1 : on teste tous les échantillons un par un.
- Méthode 2 : On regroupe les N échantillons par groupe de n (avec n|N). On effectue un test par groupe en mélangeant le sang des n individus. Si le test d'un groupe est positif (au moins un cobaye est atteint...) on teste tous les échantillons du groupe.
- 1. On note X le nombre de groupes positifs. Préciser la loi de X, ainsi que son espérance
- 2. Soit Y la variable aléatoire représentant le nombre de total de tests que l'on effectue en utilisant la deuxième méthode. Calculer l'espérance de Y.
- 3. Calculer la variance de Y.

Exercice 4

Un correcteur de copies doit corriger n copies. A chaque fois qu'il corrige une copie, et indépendamment des autres, il a une probabilité $q \in]0,1[$ de se mettre à ronchonner et de garder cette copie pour le lendemain.

On note $p = 1 - q \in]0,1[$ la probabilité pour qu'il finisse la correction d'une copie, X_1 la nombre de copies corrigées le premier jour, X_2 le nombre de copies corrigées le deuxième jour et $Y_1 = X_1 + X_2$.

- 1. Quelle est la loi suivie par X_1 ?
- 2. Dans cette question seulement, on fixe $i \in [0, n]$. Calculer, pour $k \in \mathbb{N}$, $\mathbb{P}(X_2 = k | X_1 = i)$.
- 3. Déduire de la question précédente la loi de X_2 .
- 4. Déduire de la question 2 la probabilité $\mathbb{P}(Y_2 = n)$. Interpréter cette probabilité.

Exercice 5

Un livre prêt à être édité contient 4 erreurs numérotées de 1 à 4. Il est relu par n relecteurs qui décèle chaque erreur (indépendamment les unes des autres) avec une probabilité de $\frac{1}{3}$ (où n est un entier naturel non nul). Les relectures sont également indépendantes.

- 1. Avec quelle probabilité la première erreur n'est pas décelée au cours des n relectures?
- 2. Quelle est la probabilité pour que le livre soit entièrement corrigé à la fin du processus? On note p_n cette probabilité.
- 3. Donner une condition suffisante sur n pour que $p_n \geqslant \frac{9}{10}$.
- 4. On note X_n le nombre d'erreur corrigé au cours de la relecture. Donner la loi de X_n .
- 5. Calculer l'espérance et la variance de X_n ainsi que leurs limites quand $n \to +\infty$.
- 6. (a) Calculer la probabilité pour que la première erreur soit décelée exactement par le n-ième relecteur.
 - (b) Soit $p \in]0,1[$. Montrer que la série $\sum_{n\geqslant 1} (1-p)^{n-1}p$ converge et calculer sa somme. Donner une interprétation possible pour notre cas d'étude.