Concours blanc: math B

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Le sujet comporte 3 exercices indépendants et 3 pages.

Exercice 1

Dans cet exercice, on identifie le plan à \mathbb{R}^2 et pour un point $A: \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ on considère la courbe Γ_A paramétrée par

$$\begin{cases} x(t) = t^3 + 3t^2 - at \\ y(t) = t^3 - 3t^2 - bt \end{cases}, t \in \mathbb{R}$$

- 1. Étude dans le cas où a = b = 9.
 - (a) Montrer que Γ_A possède un axe de symétrie que l'on précisera. On étudiera les fonctions x et y sur $[0, +\infty[$.
 - (b) Étudier les variations de x et y. On consignera les résultats dans un tableau de variations.
 - (c) Préciser les tangentes verticales ou horizontales ainsi que la tangente au point de paramètre 0.
 - (d) Montrer que Γ_A possède au moins un point double, c'est à dire un même point correspondant à deux valeurs distinctes du paramètre. Préciser l'angle entre les tangentes en ce point.
 - (e) Étudier la branche infinie en $+\infty$.
 - (f) Tracer Γ_A .
- 2. Cas général : a et b sont réels quelconques.
 - (a) Montrer que Γ_A possède un point singulier (aussi appelé point stationnaire) si et seulement si A appartient à une courbe \mathcal{P} dont on précisera l'équation.
 - (b) Étudier et tracer la conique d'équation $(x-y)^2 24(x+y) = 0$.

Exercice 2

Dans cet exercice, on s'intéresse à des sous ensembles de l'espace identifié à \mathbb{R}^3 .

On note $(\vec{\imath},\vec{\jmath},\vec{k})$ la base canonique de \mathbb{R}^3 et O l'origine du repère canonique.

Dans la deuxième partie, on considère la fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & y(y-2\sqrt{2}x) \end{array} \right.$$

ainsi que le sous ensemble de l'espace S d'équation cartésienne

$$S: z = f(x, y) = y(y - 2\sqrt{2}x)$$

Pour $u,v\in\mathbb{R},$ on pose également de point $M(u,v)=\begin{pmatrix}\sqrt{2}uv\\(u+v)^2\\(u^2-v^2)^2\end{pmatrix}$

Partie I : échauffement

- 1. On considère la droite \mathcal{D}_1 donnée par le système d'équation \mathcal{D}_1 : $\begin{cases} x-y+z=1\\ -x+2y+z=1 \end{cases}$. Donner un point et un vecteur directeur unitaire de \mathcal{D}_1 . Il s'agit de résoudre le système et d'interpréter le résultat.
- 2. On note \mathcal{D}_2 la droite passant par $A:\begin{pmatrix}1\\-1\\2\end{pmatrix}$ et dirigée par $\vec{u}=\begin{pmatrix}1\\0\\1\end{pmatrix}$. Donner un système d'équation de \mathcal{D}_2 , c'est à dire deux équations de plans contenant \mathcal{D}_2 et qui soient non confondus.
- 3. On considère la droite vectorielle $\mathcal{D}_3 = \operatorname{Vect}(\vec{u}_3)$ où $\vec{u}_3 = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$. On note p_3 le projecteur orthogonal sur \mathcal{D}_3 .

- (a) Calculer $\|\vec{u}_3\|$.
- (b) Pour $\vec{u} \in \mathbb{R}^3$, montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $p_3(\vec{u}) = \alpha \vec{u}_3$. Que dire de $\vec{u} p_3(\vec{u})$? On pourra illustrer la réponse par un schéma.
- (c) On note $\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Calculer les coordonnées de $p_3(\vec{u})$ en fonction de x, y, z.

Partie II : Étude de S

- 1. Comparaison de S et des points M(u, v).
 - (a) Donner deux exemples distincts de points de S.
 - (b) Montrer que pour tout u, v réels, on a $M(u, v) \in S$.
 - (c) Trouver un point de S qui ne puisse pas s'écrire sous la forme M(u, v).
- 2. Sections de S.
 - (a) On fixe $\alpha \in \mathbb{R}$ et on note \mathcal{P}_{α} le plan d'équation $y = \alpha$. Montrer que $S \cap \mathcal{P}_{\alpha}$ est une droite affine dont on précisera un point et un vecteur directeur.
 - (b) On fixe maintenant $\beta \in \mathbb{R}$ et on note \mathcal{P}_{β} le plan d'équation $x = \beta$. Montrer que $S \cap \mathcal{P}_{\beta}$ est une parabole.

Représenter cette parabole dans le repère $(O_{\beta}, \vec{j}, \vec{k})$ et dans le cas $\beta = \frac{1}{\sqrt{2}}$. On a posé $O_{\beta} = \begin{pmatrix} \beta \\ 0 \\ 0 \end{pmatrix}$. Le repère considéré est donc bien un repère du plan \mathcal{P}_{β} et on notera abusivement (Oy) et (Oz) ses axes.

- (c) On fixe finalement $\gamma \in \mathbb{R}$ et on pose $\mathcal{P}_{\gamma} : z = \gamma$. On note $\Lambda_{\gamma} = S \cap \mathcal{P}_{\gamma}$.
 - i. Réduire l'équation de conique $y(y 2\sqrt{2}x) = \gamma$.
 - ii. Décrire Λ_0 .
 - iii. Suivant les valeurs de $\gamma \in \mathbb{R}^*$, donner la nature et l'axe focal de Λ_{γ} .
 - iv. Tracer dans un même repère les 3 courbes obtenues pour $\gamma \in \{-2,0,1\}$.
- 3. Plan tangents
 - (a) Justifier rapidement que f est dérivable suivant ses deux variables et calculer $\overrightarrow{grad} f(x_0, y_0)$ pour $x_0, y_0 \in \mathbb{R}$. Préciser les éventuelles valeurs de x_0, y_0 où $\overrightarrow{grad} f(x_0, y_0) = \vec{0}$
 - (b) Notons $\vec{n}_0 = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ 1 \end{pmatrix}$. On a vu en cours que \vec{n}_0 est normal au plan \mathcal{P}_0 tangent à S au point $M_0 = \begin{pmatrix} x_0 \\ y_0 \\ f(x_0) \end{pmatrix}.$
 - i. Préciser les points $M_0 \in S$ où le plan tangent est horizontal (c'est à dire normal à \vec{k}).
 - ii. Dans le cas général, donner une équation de \mathcal{P}_0 , le plan tangent à S en M_0 .
- 4. Une projection.

Dans cette question on considère la courbe paramétrée de l'espace donnée par $g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^3 \\ t & \mapsto & \overrightarrow{OM}(t, -2t) \end{array} \right.$ et on note N(t) le point vérifiant $\overrightarrow{ON(t)} = g(t)$. Rappelons que le point M(u,v) est défini dans le préambule.

- (a) On note $g(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$. Déterminer les fonctions x, y, z.
- (b) On note $\mathcal{P} = \operatorname{Vect}(\vec{u}, \vec{v})$ où $\vec{u} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ et $\vec{v} = \frac{1}{3} \begin{pmatrix} 2\sqrt{2} \\ -1 \\ 0 \end{pmatrix}$. Justifier rapidement que \mathcal{P} est un plan vectoriel dont (\vec{u}, \vec{v}) est une base orthonormée et calculer \vec{w} tel que $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ est une base orthonormée directe de l'espace.
- (c) Pour $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ on note p(X) son projeté orthogonal sur \mathcal{P} . Calculer en fonction de a, b, c les réels α et β tels que $p(X) = \alpha \vec{u} + \beta \vec{v}$.

- (d) Appliquer le résultat précédent pour montrer que p(g(t)) = g(t). Qu'en déduire pour le point N(t)?
- (e) Montrer que le support de g est inclus dans une parabole que l'on exprimera dans le repère (O, \vec{u}, \vec{v}) du plan \mathcal{P} .

Exercice 3

Pour
$$A \in \mathcal{M}_n(\mathbb{R})$$
, on note $\varphi_A : \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM \end{array} \right.$

Exercice 3
Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note $\varphi_A : \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM \end{array} \right.$ Attention, φ_A n'est pas l'endomorphisme canoniquement associé à A car M n'est pas une colonne mais une matrice carrée.

Partie I

Dans cette partie on pose
$$A = \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & 0 & 3 & 0 \\ 0 & 4 & 0 & 3 \\ 3 & 0 & -4 & 0 \\ 0 & 3 & 0 & -4 \end{pmatrix}$

- 1. Montrer que A est diagonalisable et exhiber D, P telles que D est diagonale et P inversible et $A = PDP^{-1}$.
- 2. On pose $C = \frac{1}{5}A$ et f l'endomorphisme canoniquement associé. Sans calcul d'éléments propres, diagonaliser Cpuis interpréter géométriquement l'endomorphisme f.
- 3. Montrer qu'il existe une base orthonormée de \mathbb{R}^4 composée de vecteurs propres de B et donner une telle base. Pour le calcul du polynôme caractéristique, on pourra considérer l'opération $C_1 \leftarrow C_1 - 3C_3$.
- 4. La base obtenue à la question précédente est-elle directe? Donner un exemple d'une matrice $Q \in O_4(\mathbb{R})$ telle que $Q \notin SO_4(\mathbb{R})$.
- 5. On pose

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- (a) Vérifier que la famille $\mathcal{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ est une base de $\mathcal{M}_2(\mathbb{R})$.
- (b) Calculer $\varphi_A(E_{ij})$ pour tout $1 \leq i, j \leq 2$.
- (c) Donner la matrice de φ_A dans \mathcal{B} .
- (d) L'endomorphisme φ_A est-il diagonalisable? Si oui, préciser ses valeurs propres et une base de vecteurs propres de φ_A (on rappelle qu'ici, un vecteur propre sera une matrice de $\mathcal{M}_2(\mathbb{R})$).

Partie II

On fixe maintenant $A \in \mathcal{M}_n(\mathbb{R})$ pour un n > 1.

- 1. Soit $\lambda \in \mathbb{R}$ tel qu'il existe une matrice $M \in \mathcal{M}_n(\mathbb{R})$ non nulle vérifiant $\varphi_A(M) = \lambda M$. Montrer que la matrice $A - \lambda I_n$ n'est pas inversible.
- 2. Montrer que si $\lambda \in \mathbb{R}$ est une valeur propre de φ_A , c'est également une valeur propre de A.
- 3. Soit μ une valeur propre de A, X un vecteur colonne non nul tel que $AX = \mu X$. Soit M une matrice dont une colonne est égale à X et toutes les autres colonnes sont nulles. Montrer que M est un vecteur propre de φ_A associé à μ .

On pourra calculer AM par colonne.

- 4. Donner l'ensemble des valeurs propres de φ_A .
- 5. Montrer que si A est diagonalisable, φ_A l'est également (on pourra, à partir d'une base de vecteurs propres de A, construire une base de vecteurs propres de φ_A).