Produit scalaire

Exercice 1

- xercice 1

 1. Montrer que l'application $\varphi: (P,Q) \mapsto \sum_{k=0}^{n} P(k)Q(k)$ définit un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. Pour n=2, construire une base orthonormale à partir de la base $(1,X,X^2)$.

Exercice 2

On considère $E = \mathbb{R}[X]$.

- 1. Soient $P,Q \in \mathbb{R}[X]$ non nuls. Montrer que $\int_0^{+\infty} P(t)Q(t)e^{-t}dt$ est une intégrale convergente.
- 2. Montrer que $\varphi:(P,Q)\mapsto \int_{0}^{+\infty}P(t)Q(t)\mathrm{d}t$ est un produit scalaire sur E.
- 3. Soient $p, q \in \mathbb{N}$. Montrer que $\langle X^p, X^q \rangle = (p+q)!$

Exercice 3

Soit $(a_{ij})_{1 \le i,j \le n}$ une matrice symétrique réelle d'ordre n de valeurs propres $\lambda_1, \dots, \lambda_n$ (comptées avec leur ordre de multiplicité). Montrer que $\sum_{1 \le i,j \le n} a_{ij}^2 = \sum_{k=1}^n \lambda_k^2$.

Indication: considérer le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$

Projection et symétrie orthogonale

Exercice 4

Soit E un espace euclidien de dimension n rapporté à une base orthonormée \mathcal{B} , et \overrightarrow{u} un vecteur unitaire de E.

- 1. Montrer que la matrice de la projection orthogonale sur $\mathcal{D} = \text{Vect}(\overrightarrow{u})$ relativement à la base \mathcal{B} , est U^tU , où U est la matrice colonne des coordonnées de \overrightarrow{u} relativement à B.
- 2. En déduire la matrice de la projection orthogonale sur le plan $\mathcal{P}: x+y+z=0$ de l'espace euclidien usuel \mathbb{R}^3 rapporté à sa base canonique.

Exercice 5

En reprenant les résultats de l'exercice 2, déterminer

$$m = \min_{(a,b) \in \mathbb{R}^2} \int_0^{+\infty} (t^2 - at - b)^2 e^{-t} dt$$

Exercice 6

On se place dans $E=\mathbb{R}^3$ munit de son produit scalaire canonique, et on considère la plan ${\mathcal P}$ et la courbe ${\mathbb C}$ définis par

$$\mathcal{P}: x - 2y + 2z = 0, \ C: \begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \\ z(t) = 0 \end{cases}, \ t \in [-\pi, \pi]$$

- 1. Reconnaître \mathbb{C} .
- 2. Donner un vecteur w normal à \mathcal{P} .
- 3. Montrer que $u_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \in \mathcal{P}$ et donner une base orthonormée (u, v) de \mathcal{P} dont le premier vecteur est positivement proportionnel à u_1 et telle que (w, u, v) est une base directe de l'espace.
- 4. En notant M(t) le point de paramètre t de \mathcal{C} , donner $\alpha(t)$ et $\beta(t)$ les coordonnées du projeté orthogonal de M(t) sur \mathcal{P} dans la base (u, v).
- 5. Montrer que les coordonnées $\alpha(t), \beta(t)$ vérifient $(\alpha(t) + \beta(t))^2 + \left(\frac{\alpha(t) 2\beta(t)}{2}\right)^2 = 1$.
- 6. En déduire la nature de la projection de \mathcal{C} sur \mathcal{P} ainsi qu'un tracé dans le repère où l'équation est réduite.

Isométries

Exercice 7

Donner les matrices dans la base canonique de \mathbb{R}^3 de :

- 1. chaque réflexion par rapport à un plan de coordonnées ((xOy), (xOz), (yOz)).
- 2. chaque rotation d'angle θ autour de l'axe orienté par un vecteur de la base canonique.

Exercice 8

- 1. Question préliminaire : Soit r une rotation du plan et s une réflexion su plan. Quelles est la nature de $r \circ s$?
- 2. On considère r la rotation du plan d'angle θ . Rappeler l'écriture complexe de r sous la forme $f_r: z \mapsto$

il s'agit ici d'écrire la fonction $f_r:\mathbb{C}\to\mathbb{C}$ qui a un complexe z qui est l'affixe de $M \in \mathbb{R}^2$ associe l'affixe de r(M).

3. Soit s la réflexion canoniquement associée à $\begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$ pour un $\varphi \in]0, \pi[$. Montrer que l'écriture complexe de s est $f_s: z \mapsto e^{-\varphi}\overline{z}$

- 4. Trouver les complexes d'affixe 1 qui sont les points fixes de f_s et en déduire l'axe de
- 5. Interpréter géométriquement $r \circ s$ et $s \circ r$.

Exercice 9

Décrire les endomorphismes de l'espace vectoriel \mathbb{R}^3 euclidien donnés par :

$$1. \ f_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z \\ y \\ x \end{pmatrix}.$$

$$3. \ f_2: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \\ -z \end{pmatrix}$$

$$2. \ f_2: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} y \\ -x \\ z \end{pmatrix}$$

$$4. \ f_2: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x-z}{\sqrt{2}} \\ 1 \\ \frac{x+z}{\sqrt{2}} \end{pmatrix}$$

Exercice 10

Décrire les endomorphismes de l'espace vectoriel \mathbb{R}^3 euclidien de matrices dans la base canonique:

a)
$$\frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$$

b)
$$\frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

a)
$$\frac{1}{3}\begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$$
 b) $\frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ c) $\frac{1}{3}\begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2 \end{bmatrix}$