Table des matières

	1
ne équation cartésienne	2
les surfaces	4
	5
	t de courbes

Dans ce chapitre on rapporte l'espace usuel euclidien à \mathbb{R}^3 par le choix d'un repère orthonormé de référence $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ et on identifie les points avec leur colonne de coordonnées.

Représentation des surfaces

Surface paramétrée

I.1.1 Définition

On appelle nappe paramétrée ou surface paramétrée une fonction de classe \mathcal{C}^k $(k \geqslant 1)$ définie sur un ouvert U de \mathbb{R}^2 et à valeurs dans \mathbb{R}^3 . Une telle fonction f sera notée

$$f:(u,v)\mapsto\overrightarrow{OM}(u,v)=egin{pmatrix}x(u,v)\y(u,v)\z(u,v)\end{pmatrix}.$$

Le support d'une surface paramétrée est l'ensemble $S = \{M(u, v) | (u, v) \in U\} = f(U)$.

On a alors
$$A = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \in S \iff \exists (u, v) \in U \begin{cases} x_0 = x(u, v) \\ y_0 = y(u, v) \\ z_0 = z(u, v) \end{cases}$$

I.1.2 Exemple On considère le plan affine $\mathcal{P} = A + \operatorname{Vect}(\vec{u}, \vec{v})$ où $A = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \vec{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

Alors
$$M: \begin{pmatrix} x \\ y \\ y \end{pmatrix} \in \mathcal{P} \iff \exists u, v \in \mathbb{R} \ M = A + u\vec{u} + v\vec{v} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 + u + 2v \\ 2 + 0u + v \\ 1 + u + 2v \end{pmatrix} \qquad -\Gamma_1: u \mapsto f(u, v_0).$$

et donc \mathcal{P} est le support de la nappe paramétrée

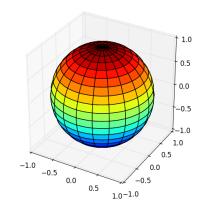
$$f: (u,v) \mapsto \begin{pmatrix} -1 + u + 2v \\ 2 + 0u + v \\ 1 + u + 2v \end{pmatrix}$$

On écrit souvent que \mathcal{P} est paramétré par

$$\begin{cases} x = -1 + u + 2v \\ y = 2 + v \\ z = 1 + u + 2v \end{cases}, (u, v) \in \mathbb{R}^2$$

I.1.3 Exemple Pour
$$u, v \in [-\pi, \pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$$
 on pose $M(u, v) = \begin{pmatrix} \sin(u)\cos(v) \\ \sin(u)\sin(v) \\ \cos(u) \end{pmatrix}$ (Si on veut définir f sur

un ouvert on peut la définir sur \mathbb{R}^2)



I.1.4 Définition

Soit $f: U \to \mathbb{R}^3$ une nappe paramétrée et $(u_0, v_0) \in U$.

Au point $M_0 = M(u_0, v_0)$ on peut définir deux courbes paramétrées de l'espaces appelées courbes coordonnées de f en M_0 :

I.1.5 Explication

- Il s'agit de courbes car on utilise un seul paramètre
- Ces courbes passent par le point M_0 .

Au point M_0 , on peut définir la droite tangente à Γ_1 lorsque $\frac{d\Gamma_1}{du}(u_0) \neq \vec{0}$ (ce n'est pas I.2 Surface définie par une équation cartésienne le seul cas, pour l'étude locale des courbes) ie $\frac{\partial f}{\partial u}(u_0, v_0) \neq \vec{0}$.

De même, pour Γ_2 où on obtient la condition $\frac{\partial f}{\partial v}(u_0, v_0) \neq \vec{0}$. Lorsque ces deux droites ne sont pas confondues, elles définissent un plan affine passant par M_0 .

I.1.6 Définition

Soit $f:(u,v)\mapsto \overrightarrow{OM}(u,v)$ une surface paramétrée définie sur un ouvert $U\subset \mathbb{R}^2.$ On note S son support. Soit $(u_0, v_0) \in U$ et $M_0 = M(u_0, v_0)$.

- 1. On dit dit M_0 est un point **regulier** de S (ou de f) ssi $\left(\frac{\partial \overrightarrow{OM}}{\partial u}(u_0, v_0), \frac{\partial \overrightarrow{OM}}{\partial v}(u_0, v_0)\right)$ est libre c'est à dire ssi $\frac{\partial \overrightarrow{OM}}{\partial u}(u_0,v_0) \wedge \frac{\partial \operatorname{Vect} OM}{\partial v}(u_0,v_0) \neq \vec{0}.$ Sinon on dit que M_0 est un point singulier ou stationnaire.
- 2. Si M_0 est régulier, on appelle plan tangent à S en M_0 le plan

$$M_0 + \operatorname{Vect}(\frac{\partial M}{\partial u}(u_0, v_0), \frac{\partial M}{\partial v}(u_0, v_0)).$$

I.1.7 Exemple Pour $(u,v) \in \mathbb{R}^2$ on pose $\begin{cases} x(u,v) = u+v \\ y(u,v) = u-v \\ z(u,v) = uv \end{cases}$. Trouvons les points réguliers ainsi que le

plan tangent en (u,v)=(0,0)

$$\frac{\partial M}{\partial u}(u,v) = \begin{pmatrix} 1\\1\\v \end{pmatrix}, \frac{\partial M}{\partial v} = \begin{pmatrix} 1\\-1\\u \end{pmatrix}. \text{ Alors } \frac{\partial M}{\partial u}(u,v) \wedge \frac{\partial M}{\partial v}(u,v) = \begin{pmatrix} u+v\\u+v\\-2 \end{pmatrix} \neq \vec{0}.$$

En (0,0) le plan tangent est normal à $\begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$ donc a une équation de la forme z+c=0 $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ de la surface $S:z=\varphi(x,y)$, le plan tangent est d'équation

où $c \in \mathbb{R}$ est à trouver. Or $M(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, donc le plan cherché est d'équation z = 0.

Plus généralement, au point $M(u_0,v_0)$, le plan tangent est normal à $\begin{pmatrix} u_0+v_0\\u_0+v_0\\-2 \end{pmatrix}$ et

possède donc une équation de la forme $(u_0+v_0)x+(u_0+v_0)y-2z+c=0$ où $c\in\mathbb{R}$ est à trouver. Or ce plan passe par $M(u_0, v_0)$ donc $(u_0 + v_0)^2 + u_0^2 - v_0^2 - 2u_0v_0 + c = 0$. Après simplification on trouve $c = -2u_0^2$.

Donner une représentation paramétrique de ce plan.

I.1.8 Définition

On considère $M_0 = M(u_0, v_0)$ un point régulier d'une nappe paramétrée. La droite normale à cette nappe en M_0 est la droite passant par M_0 et perpendiculaire au plan tangent en M_0 (elle est dirigée par un vecteur normal à ce plan).

I.2.1 Définition

Soit U un ouvert de \mathbb{R}^3 et $f \in \mathcal{C}^1(U,\mathbb{R})$. On appelle surface d'équation (implicite) f(x,y,z)=0 l'ensemble $\Sigma=\{\begin{pmatrix}x\\y\\z\end{pmatrix}\in\mathbb{R}^3|\ f(x,y,z)=0\}$ (l'ensemble des solutions

Un point $M \in \Sigma$ est dit **régulier** ssi $\overrightarrow{grad} f(M) \neq \vec{0}$ et singulier sinon.

I.2.2 Cas particulier des surfaces représentatives

L'équation se met sous la forme $z = \varphi(x, y)$ où φ est \mathcal{C}^1 sur un ouvert de \mathbb{R}^2 . Une telle surface peut être paramétrée par $M(u,v) = \begin{pmatrix} u \\ v \\ f(u,v) \end{pmatrix}$.

Tous les points sont réguliers car on obtient $\frac{\partial M}{\partial u}(u,v) = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial \varphi}{\partial v}(u,v) \end{pmatrix}, \frac{\partial M}{\partial v}(u,v) = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial \varphi}{\partial v}(u,v) \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 1 \\ \frac{\partial \varphi}{\partial y}(u,v) \end{pmatrix} \text{ et la plan tangent est normal à } \begin{pmatrix} -\frac{\partial \varphi}{\partial x}(u,v) \\ -\frac{\partial \varphi}{\partial y}(u,v) \\ 1 \end{pmatrix}.$$

On retrouve le résultat du cours sur les fonctions de deux variables. Au point $M_0 =$

$$z - \underbrace{z_0}_{=\varphi(x_0, y_0)} = (x - x_0) \frac{\partial \varphi}{\partial x} (x_0, y_0) + (y - y_0) \frac{\partial \varphi}{\partial y} (x_0, y_0)$$

I.2.3 Exemple

On peut par exemple considérer les surfaces d'équation $x^2 + y^2 + z^2 = 1$ ou $x^2 + y^2 = 4$ (décrire cette dernière).

I.2.4 Egalité avec une surface paramétrée

Reprenons $M(u, v) = \begin{pmatrix} \sin(u)\sin(v) \\ \cos(u) \end{pmatrix}$ et notons S le support de la nappe paramétrée.

Si
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M(u, v) \in S$$
 alors $x^2 + y^2 + z^2 = 1$ et donc $S \subset \Sigma : x^2 + y^2 + z^2 = 1$. Dans

le cas général, montrer l'égalité est délicat. Le cas favorable est quand les surfaces ne sont pas égales et il suffit de trouver un point de Σ qui ne soit pas dans S (on raisonne souvent sur les signes d'une ou plusieurs coordonnées).

Dans notre exemple, il y a égalité et nous allons le montrer.

Soit
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \Sigma$$
. Ainsi $(x^2 + y^2) + z^2 = 1$. Donc il existe un $\alpha \in]-\pi, \pi]$ (unique d'ailleurs)

tel que $z = \cos(\alpha)$ et $x^2 + y^2 = \sin^2 \alpha$.

Si
$$\sin(\alpha) = 0$$
, alors $x = y = 0$ et $z = \pm 1$ Alors $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M(0,0)$ ou $M(0,\pi)$.

Sinon, $\left(\frac{x}{\sin\alpha}\right)^2 + \left(\frac{y}{\sin\alpha}\right)^2 = 1$ et donc (toujours d'après le cours de sup), il existe $\beta \in]-\pi,\pi]$ tel que $\frac{x}{\sin\alpha} = \cos\beta$ et $\frac{y}{\sin\alpha} = \sin\beta$.

En posant
$$u = \alpha$$
 et $v = \beta$, on a bien $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M(u, v)$ et donc $\Sigma \subset S$.

I.2.5 Théorème (Plan tangent)

Soit U un ouvert de \mathbb{R}^3 et $f \in \mathcal{C}^1(U,\mathbb{R})$. Soit Σ la surface d'équation f(x,y,z) = 0 et $M_0 \in \Sigma$ un point régulier.

Alors le plan tangent à Σ en M_0 est le plan passant par M_0 et normal à $\overrightarrow{grad} f(M_0)$ ie le plan d'équation

$$(x - x_0)\frac{\partial f}{\partial x}(x_0, y_0, z_0) + (y - y_0)\frac{\partial f}{\partial y}(x_0, y_0, z_0) + (z - z_0)\frac{\partial f}{\partial z}(x_0, y_0, z_0) = 0$$

Preuve.

En partie admise.

On admet que lorsque $\overrightarrow{grad} f(M_0) \neq \vec{0}$, on peut trouver une nappe paramétrée régulière égale à Σ au voisinage de M_0 sous la forme $(u,v) \mapsto \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix} = M(u,v)$ et $M_0 = M(0,0)$.

Alors, f(x(u,v),y(u,v),z(u,v)) = 0 et en dérivant par rapport à u on obtient $\frac{\partial x}{\partial u}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial u}\frac{\partial f}{\partial y} + \frac{\partial z}{\partial u}\frac{\partial f}{\partial z} = 0$ et de même pour v. Alors, en interprétant ces relations comme produit scalaire, on voit que le gradient est bien orthogonale aux deux vecteurs dérivés partiels de \overrightarrow{OM} .

I.2.6 Exemple

Calculons l'équation du plan tangent et une représentation paramétrique de la normale en tout point régulier de $S: z = x^2 - y^2$.

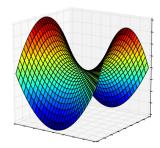
Tous les points sont réguliers (le gradient en $M_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ est $\overrightarrow{grad} f(M_0) = \begin{pmatrix} 2x_0 \\ -2y_0 \\ -1 \end{pmatrix} \neq$

$$\vec{0}$$
) et en $M_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ x_0^2 - y_0^2 \end{pmatrix} \in S$, le plan tangent est

$$P_0: z = z_0 + (x - x_0)2x_0 + (y - y_0) \times (-2y_0) = 2x_0x - 2y_0y - x_0^2 + y_0^2$$

La normale est alors $\begin{pmatrix} x_0 \\ y_0 \\ x_0^2 - y_0^2 \end{pmatrix} + \text{Vect} \begin{pmatrix} 2x_0 \\ -2y_0 \\ -1 \end{pmatrix}$. Elle est paramétrée par

$$\begin{cases} x = x_0 + 2x_0 t \\ y = y_0 - 2y_0 t \\ z = x_0^2 - y_0^2 - t \end{cases}, t \in \mathbb{R}$$



Bilan des représentations : on se donne un point $M: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$

- Dire que M est un point d'une surface d'équation donnée, c'est dire que les coordonnées de M vérifient cette équation.
- Dire que M est un point d'une nappe paramétrée, c'est dire qu'on peut exprimer les coordonnées de M en fonctions de deux réels (notés u et v plus haut).

I.3 Courbes tracées sur des surfaces

On a déjà croisé les courbes coordonnées sur les nappes paramétrées. Généralisons le résultat.

I.3.1 Modes de définition

— Pour une nappe paramétrée S, les courbes tracées sur S sont des courbes de la forme $t \mapsto \overrightarrow{OM}(u(t), v(t))$.

Le cas des courbes coordonnées est un cas particulier où l'une des fonctions u ou v est constante et l'autre l'identité.

Pour une surface Σ donnée par une équation f(x, y, z) = 0, les courbes tracées sur Σ sont les courbes de la forme $t \mapsto \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ où pour tout t on a f(x(t), y(t), z(t)) = 0.

I.3.2 Exemple

On considère la sphère paramétrée comme plus haut et la courbe $\Gamma: t \mapsto M(t,t) = \begin{pmatrix} \cos(t) \sin t \\ \sin^2(t) \end{pmatrix}$.

On peut par exemple vouloir projeter cette courbe sur un plan et tracer la courbe obtenue. Le faire sur le plan d'équation y = 0.

I.3.3 Proposition

Soit Γ une courbe paramétrée tracée sur une surface Σ .

Si M_0 est un point de Γ régulier pour la courbe paramétrée Γ et régulier pour la surface Σ (il y a deux définitions possibles, suivant la description de Σ), alors la tangente à Γ en M_0 est contenue dans le plan tangente à Σ en M_0 .

Preuve.

Nous prouvons ce résultat pour les deux manières de définir Σ .

1. Si Σ est paramétrée par M(u,v) et $M_0=M(u_0,v_0)$. Alors Γ est définie par $\Gamma:t\mapsto M(u(t),v(t))$.

Alors Γ est dérivable par composition et on a pour $t \in I$, $\gamma'(t) = u'(t) \frac{\partial M}{\partial u}(u(t), v(t)) + v'(t) \frac{\partial M}{\partial v}(u(t), v(t))$.

Si on applique en t_0 (le paramètre de M_0), on obtient le résultat souhaité (et même les coefficients de la combinaison linéaire correspondante qui sont respectivement $u'(t_0)$ et $v'(t_0)$).

2. Si
$$\Sigma: f(x,y,z)=0$$
 et que Γ est donnée par $t\mapsto \begin{pmatrix} x(t)\\y(t)\\z(t) \end{pmatrix}$ alors on a pour tout t

$$f(x(t), y(t), z(t)) = 0$$

et en dérivant par rapport à t (par composition), on obtient bien $\overrightarrow{grad} f(M_0) \perp \Gamma'(t_0)$ et donc la tangente à Γ en M_0 (qui est dirigée par $\Gamma'(t_0)$) est bien

contenue dans le plan passant par M_0 et normal à $\overrightarrow{grad} f(M_0)$ qui est le plan tangent.

Exemples de surfaces et de courbes

Surfaces réglées

II.1.1 Définition

Une surface S est dite **réglée** ssi elle peut être écrite comme la réunion d'une famille de droites.

Plus précisément, S est réglée ssi il existe une surface paramétrée dont le support est S de la forme $M(k,t) = A(t) + k\vec{u}(t)$ où A, \vec{u} sont de classe $\mathcal{C}^k(I,\mathbb{R}^3)$ et \vec{u} ne s'annule pas. M est alors définie sur $I \times \mathbb{R}$.

Pour un t fixé, la droite $\mathcal{D}_t = A(t) + \text{Vect}(\vec{u}(t))$ est une **génératrice** de S et on a $S = \bigcup \mathcal{D}_t$ $t \in I$

II.1.2 Exemple

Le cylindre d'équation $x^2+y^2=1$ est réglé. Ses génératrices sont parallèles à (Oz). Une

paramétrisation possible est
$$M(k,t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ k \end{pmatrix}$$

II.1.3 Exemple

Considérons la jolie surface $\Sigma : x^2 + y^2 - z^2 = 1$ (hyperboloïde de révolution à une nappe).

Nous allons démontrer que cette surface est réglée.

Soit
$$M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
. Supposons pour l'instant $x \neq \pm 1$.

$$M \in \Sigma \text{ ssi } (y-z)(y+z) = (1-x)(1+x).$$

Or
$$(1-x)(1+x) \neq 0$$
 donc $M \in \Sigma$ ssi il existe un $t \neq 0$ tel que $(y-z) = t(1-x)(1+x)$

On peut donner une representation parametrique iachiement, car
$$M \in \Sigma$$
 sis $(y-z)(y+z) = (1-x)(1+x)$. Or $(1-x)(1+x) \neq 0$ donc $M \in \Sigma$ sis il existe un $t \neq 0$ tel que $(y-z) = t(1-y)$ génératrices de Σ sont de la forme $D_t = A + \text{Vect}\begin{pmatrix} \cos(t) - 1 \\ 2\sin(t) - 1 \\ -1 \end{pmatrix}$. Il s'agit de l'intersection de 2 plans non parallèles et donc d'une droite.

Trouvons une équation cartésienne. On a, pour les points de Σ .

plans non parallèles et donc d'une droite.

Remarquons que cette droite passe par
$$A(t) = \begin{pmatrix} -1 \\ t \\ -t \end{pmatrix}$$
 et en posant x comme paramètre
$$\begin{pmatrix} x - z = k \cos t \\ y - z = 2k \sin t \\ \frac{1}{2} \left(\frac{1}{t} - t \right) \end{pmatrix}$$
 et donc par $\begin{pmatrix} 2t \\ 1 - t^2 \\ 1 + t^2 \end{pmatrix}$ qui est Ainsi les points de

bien non nul.

Ainsi les points de Σ d'abscisse $\neq \pm 1$ sont décrits par une réunion de droites.

Le cas $x = \pm 1$ est facile : on obtient $y = \pm z$ et $\begin{cases} x = \pm 1 \\ y = \pm z \end{cases}$ est la réunion de 4 droites.

II.1.4 Exemple (Un cône)

On considère l'ellipse $\mathcal{C}: \begin{cases} x^2 + \frac{y^2}{4} = 1 \\ z = 0 \end{cases}$ et le point $A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Donner un représen-

tation de la surface réglée Σ engendrée par les droites qui passent par A et un point de

On peut donner une représentation paramétrique facilement, car les droites \mathcal{D}_t qui sont

génératrices de
$$\Sigma$$
 sont de la forme $\mathcal{D}_t = A + \operatorname{Vect} \begin{pmatrix} \cos(t) - 1 \\ 2\sin(t) - 1 \\ -1 \end{pmatrix}$

Trouvons une équation cartésienne. On a, pour les points de Σ , $\begin{cases} x = 1 + k(\cos t - 1) \\ y = 1 + k(2\sin(t) - 1) \end{cases} \Leftarrow$

$$\begin{cases} x - z = k \cos t \\ y - z = 2k \sin t \end{cases}$$

Ainsi les points de Σ vérifient $4(x-z)^2+(y-z)^2=4(1-z)^2$ (on a une inclusion,

on peut vérifier la deuxième d'une manière similaire au raisonnement fait sur la sphère en posant k=1-z).

II.1.5 Proposition

Soit S une surface réglée. En un point régulier M_0 , le plan tangent contient la génératrice passant par M_0 .

Preuve.

Avec les notations de la définition, $\frac{\partial \overrightarrow{OM}}{\partial k}(k,t) = \vec{u}(t)$ est un des vecteurs qui engendre la direction du plan tangent.

II.2 Surface de révolution

II.2.1 Définition

On appelle surface de révolution la surface S obtenue par rotation d'une courbe Γ autour d'une droite Δ . Plus précisément, il s'agit de la réunion de toutes les images de Γ par les rotations d'axe Δ et d'angle quelconque.

- Δ est l'axe de S.
- Les intersections de S avec les plans orthogonaux à Δ sont soit vide soit des cercles d'axe Δ que l'on appelle parallèles de S.
- Un plan méridien de S est un plan qui contient Δ .
- Une méridienne de S est l'intersection de S avec un demi-plan méridien, délimité par Δ .

II.2.2 Matrices de rotation autour d'un axe de coordonnées

Rappeler les matrices de rotation d'un angle θ autour d'un axe de coordonnées orienté par un vecteur de la base canonique.

II.2.3 Remarque

On peut traduire la condition M est l'image d'un point M_0 par une certaine rotation autour de D par la condition $d(M, D) = d(M_0, D)$ et $\overrightarrow{MM_0} \perp D$.

II.2.4 Exemple

Donner une paramétrisation et une équation de la surface de révolution S obtenue par

rotation de
$$\mathcal{D} = A + \text{Vect}(u) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \text{Vect} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
 autour de l'axe (Oz) .

1. Une paramétrisation de \mathcal{D} est $\begin{cases} x(t) = 1 + t \\ y(t) = 2t \\ z(t) = -2t \end{cases}$.

Ainsi $M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in S$ ssi il existe $M_t \in D$ tels que M est obtenu par rotation de

 M_t d'un angle θ autour de (Oz) ssi il existe t tel que $x=(1+t)\cos\theta-2t\sin\theta$, $y=(1+t)\sin\theta+2t\cos\theta$ et z=-2t pour un $\theta\in[-\pi,\pi]$.

On a calculé $R_{\theta}\overrightarrow{OM_t}$ où R_{θ} est la matrice de rotation d'angle θ autour de l'axe orienté par $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

2. Trouvons une équation cartésienne directement.

Un système d'équation de \mathcal{D} est 2x - y = 2 et y + z = 0. Dans la suite, on veut se débarrasser du $\exists M_0$ c'est à dire montrer que les nombres x_0, y_0, z_0 existent à une condition qui ne porte que sur x, y, z.

$$M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in S \text{ ssi il existe } M_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \in D \text{ tel que } d(M_0, (Oz)) = d(M, (Oz)) \text{ et } z = z_0 \text{ ssi il existe } M_0 \in D \text{ tel que } x_0^2 + y_0^2 = x^2 + y^2 \text{ et } z = z_0.$$

Or, pour $M_0 \in \mathcal{D}$, $y_0 = -z_0$ et $x_0 = \frac{1}{2}y_0 + 1 = -\frac{z_0}{2} + 1$.

Ainsi, $M \in S$ ssi il existe $x_0, y_0, z_0 \in \mathbb{R}$ tels que $z_0 = z, y_0 = -z, z_0 = -\frac{z}{2} + 1$ et $(-\frac{z}{2} + 1)^2 + z^2 = x^2 + y^2$. De tels nombres réels existent toujours.

 $M \in S \text{ ssi } \frac{5}{4}z^2 - z + 1 = x^2 + y^2.$

II.3 Intersection de surfaces

II.3.1 Définition

Soit U un ouvert de \mathbb{R}^3 et $f, g \in \mathcal{C}^1(U, \mathbb{R})$.

On appelle courbe d'équation cartésienne $\Gamma:\begin{cases} f(x,y,z)=0\\ g(x,y,z)=0 \end{cases}$ l'intersection des des surfaces ainsi définies (cette intersection peut être une surface, un ou des points, vide...). Un point $M_0\in\Gamma$ est dit régulier si et seulement si $\overrightarrow{qrad}\ f(M_0)\wedge\overrightarrow{qrad}\ g(M_0)\neq \vec{0}$

II.3.2 Théorème

II.3.2 Théorème Avec les notations de la définition précédente, si $M_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ est un point régulier de

 Γ alors la tangente à Γ en M_0 est la droite $M_0 + \operatorname{Vect}(\overrightarrow{qrad} f(M_0) \wedge \overrightarrow{qrad} a(M_0))$

Preuve.

Une idée : la tangente à Γ est l'intersection des plans tangents à Σ_1 et Σ_2 en M_0 . De plus, le gradient est normal au plan tangent.

II.3.3 Exemple

II.3.3 Exemple Décrire géométriquement la courbe plane $C: \begin{cases} x^2 + y^2 + z^2 = 1 \\ x - y + \frac{1}{\sqrt{2}}z = 0 \end{cases}$

 \mathcal{C} est l'intersection d'un plan et d'un sphère : il s'agit d'un cercle ou d'un point ou de l'ensemble vide.

Décrire la projection orthogonale de \mathcal{C} sur (xOy). Un point $M: \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ est sur la

projection cherchée ssi il existe $z \in \mathbb{R}$ tel que $M_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in C$

$$\iff \exists z \in \mathbb{R} \begin{cases} x^2 + y^2 + z^2 = 1 \\ z = \sqrt{2}(y - x) \end{cases} \iff \begin{cases} x^2 + y^2 + 2(x - y)^2 = 1 \\ \exists z \in \mathbb{R} \ z = \sqrt{2}(y - x) \end{cases}$$

la deuxième condition est toujours vérifiée.

On obtient une conique d'équation $x^2 + y^2 + 2(x - y)^2 = 1 \iff 3x^2 - 4xy + 3y^2 = 1$ La matrice associée est $\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$ dont les valeurs propres sont 1 et 5. De plus $E_1(A) =$ $\operatorname{Vect} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $E_5(A) = \operatorname{Vect} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Ainsi par rotation d'angle $\frac{\pi}{4}$ on obtient l'équation réduite $x'^2 + 5y'^2 = 1$ qui est une équation d'ellipse que l'on sait tracer.

```
u = np.array([1, 1]) / np.sqrt(2)
v = np.array([-1, 1]) / np.sqrt(2)
3 T = np.linspace(-np.pi, np.pi, 150)
4 points = [np.cos(t) * u + np.sin(t) * v / np.sqrt(5) for t in T]
5 X = np.array([p[0] for p in points])
6 Y = np.array([p[1] for p in points])
```

7 plt.plot(X, Y)

Index

Plan tangent, 3