Devoir surveillé n°5

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Exercice 1

Les questions de cet exercice sont très proches du cours, et indépendantes les unes des autres.

- 1. Donner sans justification la caractérisation géométrique de l'application $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & \begin{pmatrix} -x \\ y \\ -z \end{pmatrix} \right.$
- 2. On considère la matrice $M=\frac{1}{3}\begin{pmatrix}2&1&-2\\1&2&2\\-2&2&-1\end{pmatrix}$ et on note f l'endomorphisme canoniquement associé.
 - (a) Montrer que $M \in O_3(\mathbb{R})$. Qu'en déduire pour la nature géométrique de f?
 - (b) Donner les éléments caractéristiques (qui permettent de caractériser la transformation) de f. Les éventuels espaces vectoriels trouvés devront être donnés par des bases.
- 3. Pour $t \in \mathbb{R}$, on considère la droite $\mathcal{D}_t : (1-t^2)x + 2ty = 4t + 2$.
 - (a) Montrer que $A(t) = \begin{pmatrix} 2 \\ t+2 \end{pmatrix}$ est un point de \mathcal{D}_t et donner un vecteur $\vec{u}(t)$ directeur de \mathcal{D}_t .
 - (b) Déterminer l'enveloppe des droites \mathcal{D}_t .
 - (c) Montrer que les points de cette enveloppe vérifient l'équation $(x-1)^2 + (y-2)^2 = 1$. Qu'en déduire?
 - (d) En posant $t = \tan \theta$ pour un $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, exprimer les points de l'enveloppe trouvée et préciser le résultat de la question précédente.
- 4. On considère la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & -x^2 + 4xy + 2y^2 2x 8y \end{array} \right.$
 - (a) Montrer que f possède un unique point critique en un point Ω dont on donnera les coordonnées.
 - (b) Est-ce que f possède un extremum local en Ω ?
 - (c) On note $(\vec{\imath}, \vec{\jmath})$ la base canonique de \mathbb{R}^2 et $\mathcal{R} = (O, \vec{\imath}, \vec{\jmath})$. On considère maintenant la conique \mathcal{C} d'équation (dans \mathcal{R})

$$C: f(x,y) = -4$$

et on pose un point $O' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. On considère maintenant le repère $\mathcal{R}' = (O', \vec{\imath}, \vec{\jmath})$.

Pour un point $M = \begin{pmatrix} x \\ y \end{pmatrix}$ dans le repère canonique, on note $M : \begin{pmatrix} x' \\ y' \end{pmatrix}$ ses coordonnées dans \mathcal{R}' . Ainsi

$$\begin{cases} x' = x - 1 \\ y' = y - 1 \end{cases}$$

Exprimer l'équation de $\mathcal C$ dans le repère $\mathcal R'$

- (d) Donner la matrice associée à l'équation de \mathcal{C} dans le repère de votre choix, et diagonaliser cette matrice en utilisant une base orthonormée **directe** de vecteurs propres.
 - En déduire l'équation réduite de \mathcal{C} dans un repère \mathcal{R}'' à préciser (centre et vecteurs de base) où on notera les coordonnées x'' et y''.
- (e) Donner l'interprétation géométrique de l'endomorphisme canoniquement associé à la matrice de passage exhibée dans la question précédente.
- (f) Représenter la conique \mathcal{C} dans le repère \mathcal{R} . On donne $\frac{1}{\sqrt{3}} \approx \frac{1}{2}$ et $\frac{1}{\sqrt{2}} \approx \frac{3}{4}$. Vous ferez figurer sur le schéma : les 3 repères $\mathcal{R}, \mathcal{R}', \mathcal{R}''$, les sommets de la conique et les tangentes associées ainsi qu'au moins une autre information.

Exercice 2

On note E l'espace vectoriel $\mathcal{C}^1(\mathbb{R}^3,\mathbb{R})$ des fonctions de classe \mathcal{C}^1 définies sur \mathbb{R}^3 et à valeurs dans \mathbb{R} . On note F l'espace vectoriel $\mathcal{C}(\mathbb{R}^3,\mathbb{R}^3)$ des fonctions continues définies sur \mathbb{R}^3 et à valeurs dans \mathbb{R}^3 .

Partie I

On définit une fonction φ sur E par

$$\forall f \in E \ \varphi(f) = \nabla f$$

où ∇ désigne le gradient.

- 1. Montrer que φ est une application linéaire, à valeurs dans F.
- 2. Déterminer le noyau de φ . Qu'en déduit-on pour φ ?
- 3. (a) Énoncer le théorème de Schwartz pour les fonctions de 3 variables.
 - (b) Soit $V:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une fonction de classe \mathcal{C}^1 , définie sur \mathbb{R}^3 , telle qu'il existe $f\in E$ telle que $V=\varphi(f)$. Démontrer que

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \; ; \; \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \; ; \; \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}.$$

- 4. On pose pour tout $(x, y, z) \in \mathbb{R}^3$, $V(x, y, z) = (1 + y^2 + y^2 z^2, xy(1 + z^2), xy^2 z)$.
 - (a) Justifier qu'il n'existe pas de fonction f telle que $\nabla f = V$. Qu'en déduit-on pour la fonction φ ?
 - (b) Déterminer les fonctions f telles que $\forall (x, y, z) \in \mathbb{R}^3 \ \nabla f(x, y, z) = xV(x, y, z)$.

Partie II

On définit six fonctions par

$$\forall (x, y, z) \in \mathbb{R}^3 \ f_1(x, y, z) = \cos(x)$$
 $f_2(x, y, z) = \sin(x)$
 $f_3(x, y, z) = y \cos(x)$ $f_4(x, y, z) = y \sin(x)$
 $f_5(x, y, z) = z \cos(x)$ $f_6(x, y, z) = z \sin(x)$

On considère alors $G = \text{Vect}(f_1, f_2, f_3, f_4, f_5, f_6)$ l'espace vectoriel engendré par ces six fonctions.

- 1. Démontrer que $\mathcal{B} = (f_1, f_2, f_3, f_4, f_5, f_6)$ est une base de G. On pourra penser à évaluer en des triplets bien choisis.
- 2. On pose alors $\forall f \in G \ \phi(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = \langle \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \nabla f \rangle.$

Montrer que ϕ est un endomorphisme de G.

- 3. (a) Déterminer la matrice A de ϕ dans la base \mathcal{B} puis calculer A^2 .
 - (b) Sans calcul, donner les valeurs propre de A^2 . A^2 est-elle diagonalisable sur \mathbb{R} ? Sur \mathbb{C} ?
 - (c) A est-elle diagonalisable sur \mathbb{R} ? Sur \mathbb{C} ? Aucun calcul n'est attendu.
 - (d) En calculant un espace propre, déterminer l'ensemble des fonctions f de G vérifiant $\phi^2(f) + f = 0$.

Exercice 3

On considère la fonction $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$.

- 1. Donner le domaine de définition \mathcal{D}_f de f.
- 2. Montrer que f est dérivable sur \mathcal{D}_f et calculer sa dérivée
- 3. Montrer que f est développable en série entière sur \mathcal{D}_f (on ne calculera pas ici ce développement en série entière).
- 4. Montrer que f est solution sur \mathcal{D}_f de l'équation différentielle :

$$(1 - x^2)f'(x) - xf(x) = 0$$

et vérifie en plus f(0) = 1, f'(0) = 0.

5. On recherche le développement en série entière de f sur \mathcal{D}_f sous la forme :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- (a) Calculer a_0 et a_1 .
- (b) Donner, pour tout entier naturel non nul n, une relation entre a_{n+1} et a_{n-1} .
- (c) Pour tout entier naturel p, exprimer a_{2p} et a_{2p+1} en fonction de p.
- (d) Donner le développement en série entière de f.

Exercice 4

On se place dans l'espace \mathbb{R}^3 munit de sa base canonique notée $\mathcal{B}_c = (\vec{\imath}, \vec{\jmath}, \vec{k})$

Pour
$$t, u \in \mathbb{R}$$
 on pose le point $M(t, u) = \begin{pmatrix} x(t, u) \\ y(t, u) \\ z(t, u) \end{pmatrix} = \begin{pmatrix} u \cos t \\ (u+1) \sin t \\ \sin t \end{pmatrix}$.

- 1. Dans cette première question, on fixe $t \in \mathbb{R}$ et on considère la courbe Δ_t obtenue comme l'ensemble des points M(t,u) lorsque u parcourt \mathbb{R} . Ainsi $\Delta_t = \{M(t,u); u \in \mathbb{R}\}.$
 - (a) Montrer que Δ_t est une droite parallèle à un plan de coordonnées que l'on précisera.
 - (b) Qu'en déduire pour la surface S paramétrée par $(t, u) \mapsto M(t, u)$?
- 2. On fixe maintenant $u \in \mathbb{R}$ et on note Γ_u la courbe correspondante (obtenue comme l'ensemble des points M(t,u) lorsque t parcourt \mathbb{R}). Pour $t \in \mathbb{R}$ on notera G(t) le point M(t,u)
 - (a) Cas u = -1. Montrer que Γ_{-1} est contenu dans un plan et décrire Γ_{-1}
 - (b) Cas u = 0. Montrer que Γ_0 est contenue dans une droite à préciser et décrire Γ_0 .

On se place pour la suite dans le cas où $u \in \mathbb{R} \setminus \{-1, 0\}$

- (c) On note $H_1(t)$ le projeté orthogonal de G(t) sur (xOy) et $\gamma_1: t \mapsto H_1(t)$. Donner la nature de la courbe γ_1 .
- (d) On note $H_2(t)$ le projeté orthogonal de G(t) sur (yOz) et $\gamma_2: t \mapsto H_2(t)$. Donner la nature de la courbe γ_2 .
- (e) On note $H_3(t)$ le projeté orthogonal de G(t) sur (xOz) et $\gamma_3: t \mapsto H_3(t)$. Donner la nature de la courbe γ_3 .
- (f) Posons $\vec{I} = \vec{\imath}, \vec{J} = \frac{1}{\sqrt{(1+u^2)+1}} \left((1+u)\vec{\jmath} + \vec{k} \right)$ et $\vec{K} = \vec{I} \wedge \vec{J}$. On considère également $\mathcal{R}' = (O, \vec{I}, \vec{J}, \vec{K})$.
 - i. Justifier que $\mathcal{B}=(\vec{I},\vec{J},\vec{K})$ est une base orthonormée directe de \mathbb{R}^3 et calculer $P=\mathrm{Mat}_{\mathcal{B}_c}(\mathcal{B})$ ainsi que P^{-1} .
 - ii. Donner la caractérisation géométrique de f, l'endomorphisme canoniquement associé à P et celle de g canoniquement associée à P^{-1} .
 - iii. On note $\begin{pmatrix} x_1(t,u) \\ y_1(t,u) \\ z_1(t,u) \end{pmatrix}$ les coordonnées de M(t,u) dans la base \mathcal{B} . Calculer ces coordonnées et décrire la courbe Γ_u .