Théorème 1 (d'Alembert-Gauss)

Tout polynôme de $\mathbb{C}[X]$ non constant possède au moins une racine.

Nous allons prouver ce théorème en plusieurs étapes. Soit $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{C}[X]$ un polynôme de degré p > 0.

On note $f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{R}^+ \\ z & \mapsto & |P(z)| \end{array} \right.$. Le gros de notre travail va consister à étudier la fonction f.

Lemme 1

Soit $(z_n) \in \mathbb{C}^{\mathbb{N}}$. Si $(z_n)_n$ converge vers $\alpha \in \mathbb{C}$ alors $(f(z_n))_n$ converge vers $f(\alpha)$.

Ceci est analogue à notre théorème de composition d'une suite à valeurs réelles par une fonction d'une variable r'eelle.

Preuve.

Soit $n \in \mathbb{N}$. Ramenons-nous à une suite de réels positifs, et prouvons qu'elle tend vers 0.

On a
$$|f(z_n) - f(\alpha)| = \left| \left| \sum_{k=0}^p a_k z_n^k \right| - \left| \sum_{k=0}^p a_k \alpha^k \right| \right| \le \left| \sum_{k=0}^n a_k z_n^k - \sum_{k=0}^p a_k \alpha^k \right|$$
 par inégalité triangulaire.

De plus
$$\sum_{k=0}^{p} a_k z_n^k - \sum_{k=0}^{p} a_k \alpha^k = \sum_{k=1}^{p} a_k (z_n^k - \alpha^k) = (z_n - \alpha) \sum_{k=1}^{p} a_k \left(\sum_{i=0}^{k-1} z_n^i \alpha^{k-i} \right)$$
 (simplification des a_0 et actorisation dans un anneau).

Comme (z_n) converge, elle est bornée et on peut poser $M \in \mathbb{R}^+$ tel que $\forall n \in \mathbb{N} |z_n| \leq M$.

Alors
$$|f(z_n) - f(\alpha)| \le |z_n - \alpha| \sum_{k=1}^p |a_k| \left(\sum_{i=0}^{k-1} |z_n^i| |\alpha^{k-i}|\right)$$
 par inégalité triangulaire (appliquée $p+1$ fois) et ainsi $|f(z_n) - f(\alpha)| \le |z_n - \alpha| \times A$ où A est une constante (indépendante de n) dans \mathbb{R}^+ donnée par
$$\sum_{k=1}^p |a_k| \left(\sum_{i=0}^{k-1} |M|^i |\alpha^{k-i}|\right).$$
 Par produit de limites réelles et par encadrement, $|f(z_n) - f(\alpha)| \to 0$ et donc $f(z_n) \to f(\alpha)$

Lemme 2 (Lemme des pics)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Alors on peut extraire de $(u_n)_n$ une suite $(v_n) = (u_{\varphi(n)})$ qui soit monotone.

Preuve.

Voir la preuve du théorème de Bolzano-Weierstrass.

Remarque préliminaire

Soit $r \in \mathbb{R}^+$. La fonction $\varphi_r: \left\{ \begin{array}{ccc} [-\pi,\pi] & \to & \mathbb{R}^+ \\ \theta & \mapsto & |P(re^{i\theta})| \end{array} \right.$ possède un maximum et un minimum car c'est une fonction réelle continue (par compositions) sur un segment.

Proposition 1 La fonction $f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{R}^+ \\ z & \mapsto & |P(z)| \end{array} \right.$ possède un minimum.

Ce résultat généralise le théorème sur les fonctions d'une variable réelle qui affirme que l'image d'un segment par une fonction continue est un segment.

Preuve.

Notons que f est minorée par 0 et donc on peut poser $m = \inf f(\mathbb{C})$ car l'image de f est une partie non vide et minorée de \mathbb{R} . Le but est ici de montrer que m est non seulement un minorant mais le minimum de $f(\mathbb{C})$ c'est

De plus, si on considère
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^+ & \to & \mathbb{R}^+ \\ r & \mapsto & \displaystyle\min_{\theta \in [-\pi,\pi]} |P(re^{i\theta})| \end{array}, \text{ alors } g(r) \underset{r \to +\infty}{\sim} |a_p| r^p. \text{ En effet, si } r > 0, \right.$$

alors
$$\frac{g(r)}{|a_p|r^p} = \frac{1}{|a_pr^p|} \min_{\theta \in [-\pi,\pi]} |\sum_{k=0}^p a_k r^k e^{ik\theta}| = \min_{\theta \in [-\pi,\pi]} \frac{1}{|a_pr^p|} |\sum_{k=0}^p a_k r^k e^{ik\theta}|$$
 car $\frac{1}{|a_pr^p|}$ ne dépend pas de θ . Ainsi la quantité dont on veut le minimum est $|e^{pi\theta} + \sum_{k=0}^{p-1} \frac{a_k}{a_p} r^{k-p} e^{ik\theta}|$ en isolant le dernier terme. Mais la somme tend

vers 0 quand $r \to +\infty$ par somme (d'un nombre fixé de termes) et de manière indépendante de θ (c'est à dire qu'on peut trouver une valeur de r suffisamment grande pour que cette somme soit de module $\leqslant \varepsilon$ pour toutes les valeurs de θ et quelque soit $\varepsilon > 0$ fixé à l'avance). Donc on a bien $\frac{g(r)}{|a_p|r^p} \underset{r \to +\infty}{\to} 1$.

Ainsi on peut restreindre la recherche de notre minimum à un ensemble de complexe de la forme $D = \{z \in A \mid z \in A \}$ $\mathbb{C}||z| \leq R$ pour un certain R > 0 (posé tel que si $|z| \geq R$ alors $|P(z)| \geq m + 42$ par exemple).

D'après la caractérisation de la borne inférieure montrée dans le chapitre sur les réels, pour n > 0 on peut poser $a_n \in f(\mathbb{C})$ tel que $m \leqslant a_n < m + \frac{1}{n}$ (car $\frac{1}{n} > 0$). Ainsi on a construit une suite $(a_n)_n \in \mathbb{R}^{\mathbb{N}}$ (à valeurs dans $f(\mathbb{C})$) qui converge vers m. Or tout a_n est l'image par f d'un certain $z_n \in D$ (oui, dans notre disque, sinon $|P(z_n)| = a_n \geqslant m + 42$ ce qui n'est pas).

Nous disposons maintenant d'une suite $(z_n)=(x_n+iy_n)$ sous forme algébrique qui ne converge pas forcément mais qui est bornée (en module) par R et qui vérifie $\forall n \in \mathbb{N}$ $f(z_n)=a_n$. D'après le lemme précédent on peut extraire une suite $(u_n)=(x_{\varphi(n)})_n$ qui est monotone.

Si on pose $(v_n) = (y_{\varphi(n)})$, alors v est à valeurs réelles donc on peut également en extraire une suite $(v_{\psi(n)})$ monotone. Alors les suites $(u_{\psi(n)})$ et $(v_{\psi(n)})$ sont monotones et extraites de (x_n) et (y_n) respectivement.

Comme (z_n) est bornée et que pour tout $n \in \mathbb{N}$ on a $|x_n| \leq |z_n|$ et $|y_n| \leq |z_n|$ (chapitre sur les complexes), les suites (x_n) et (y_n) sont bornées et donc nos suites extraites aussi.

Finalement $(u_{\psi(n)})$ et $(v_{\psi(n)})$ sont monotones et bornées et donc convergent vers deux réels notés α et β respectivement.

La suite complexe $\gamma_n = u_{\psi(n)} + iv_{\psi(n)}$ est alors convergente vers $\alpha + i\beta$ et extraite de (z_n) . Ainsi $(f(\gamma_n))_n$ est extraite de (a_n) et converge donc vers m.

De plus, d'après le lemme 1, $f(\gamma_n) \to f(\alpha + i\beta)$.

Par unicité de la limite, $m = f(\alpha + i\beta)$ et donc m est non seulement la borne inférieure de f mais son minimum.

Preuve du théorème On souhaite montrer que P possède une racine dans \mathbb{C} . Supposons que au contraire $\forall z \in \mathbb{C}$ $P(z) \neq 0$.

- La première étape consiste à modifier l'équation P(z) = 0 que l'on souhaite étudier pour simplifier les raisonnements.
 - Notons $m = \min(f) = f(z_0)$ (pour un certain $z_0 \in \mathbb{C}$) le minimum de la proposition précédente. Quitte à étudier plutôt le polynôme $P(X z_0)$ (qui a autant de racines que P, elles sont seulement décalée de la constante z_0), on peut supposer que $z_0 = 0$. Ainsi la fonction f est minimale en 0 et $f(0) = m = |a_0|$.
- On a de plus $a_0 \neq 0$ (sinon 0 est racine) et on peut donc supposer $a_0 = 1$ (quitte à diviser l'équation P(z) = 0 par a_0 sans modifier ses solutions). Ainsi on peut écrire $P(X) = 1 + a_k X^k + X^k Q(X)$ où k est le plus petit indice i > 0 tel que $a_i \neq 0$ (un tel indice existe car $\deg(P) > 0$) et $Q \in \mathbb{C}[X]$ est tel que Q(0) = 0 (on a factorisé par X^k des puissances de X supérieures k+1 s'il y en a et sinon Q=0). On a maintenant f(0)=m=1.

 Comme $a_k \neq 0$, on peut poser un $d \in \mathbb{C}^*$ tel que $d^k = -\frac{1}{a_k}$ (chapitre sur les racines k-ièmes de l'unité). Alors
- Comme $a_k \neq 0$, on peut poser un $d \in \mathbb{C}^*$ tel que $d^k = -\frac{1}{a_k}$ (chapitre sur les racines k-ièmes de l'unité). Alors pour $t \in [0,1]$ on a $f(td) = |1 + a_k(td)^k + (td)^k Q(td)| = |1 t^k + (td)^k Q(td)| \leq |1 t^k| + |(td)^k Q(td)|$. Or la fonction $t \mapsto d^k Q(td)$ (variable réelle, valeurs complexes) est polynomiale et nulle en 0 donc tend vers 0 quand $t \to 0$. En particulier pour t "assez proche" de 0 et dans]0,1[on a $|d^k Q(td)| < \frac{1}{2}$. Or, pour ces t, $|1 t^k| + |(td)^k Q(td)| = 1 t^k + t^k |d^k Q(td)| < 1 t^k + \frac{t^k}{2} = 1 \frac{t^k}{2} < 1$. Ainsi 1 ne peut pas être le minimum de f. Contradiction.
- Le seul minimum possible pour f est 0, donc P possède une racine.