Somme d'une série

Vocabulaire

Définition 1

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ une suite.

On appelle série de terme général u_n et on note $\sum u_n$ ou $\sum_{n\geq 0} u_n$ la suite (S_N) définie Proposition 4 par

$$\forall N \in \mathbb{N} \ S_N = \sum_{n=0}^N u_n$$

On dit que S_N (le nombre) est la Nième somme partielle de cette série.

Il est possible de commencer à sommer non pas à l'indice 0 mais à un indice entier fixé n_0 (ce qui revient à considérer que les premiers termes sont nuls). Dans ce cas la série est notée $\sum_{n\geqslant n_0} u_n$.

Définition 2

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On dit que la série $\sum_{n\geqslant 0} u_n$ converge ssi la suite des somme partielles \mathbf{II} converge.

Quand elle existe, on note $\sum_{n=0}^{+\infty} u_n$ la limite des sommes partielles et on l'appelle somme de la série.

Définition 3

Soit $\sum\limits_{n\geqslant 0}u_n$ une série à valeurs complexes convergente de limite $\ell\in\mathbb{C}.$ On peut alors

poser pour tout $n \in \mathbb{N}$, $R_n = \ell - S_n = \sum_{k=n+1}^{+\infty} u_k$. C'est le reste d'ordre n de cette série.

Lien avec les suites

Proposition 1

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$.

SI la série $\sum_{n\geqslant 0}u_n$ converge ALORS $u_n \underset{+\infty}{\rightarrow} 0$

Définition 4

On dit que la série $\sum u_n$ diverge grossièrement quand $u_n \not\to 0$.

Dans ce cas, d'après la proposition précédente, $\sum u_n$ diverge (ie ne converge pas).

Proposition 2

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. La suite (u_n) converge ssi la série $\sum (u_{n+1} - u_n)$ converge.

Dans ce cas
$$\sum_{0}^{+\infty} (u_{n+1} - u_n) = \lim_{+\infty} u_n - u_0$$
.

Opérations sur les séries

Proposition 3

PTSI

 $Soit(u_n) \in \mathbb{C}^{\mathbb{N}} \ et \ \lambda \in \mathbb{C}. \ Si \sum_{n \geq 0} u_n \ converge \ alors \sum_{n \geq 0} \lambda u_n \ converge \ et \sum_{n \geq 0} u_n \lambda u_n = \lambda \sum_{n \geq 0} u_n.$

Soient $(u_n), (v_n) \in \mathbb{C}^{\mathbb{N}}$.

$$Si\sum_{n\geqslant 0}u_n$$
 et $\sum_{n\geqslant 0}v_n$ convergent alors $\sum_{n\geqslant 0}(u_n+v_n)$ converge et $\sum_{0}^{\infty}(u_n+v_n)=\sum_{0}^{\infty}u_n+\sum_{0}^{\infty}v_n$.

Proposition 5

Si $\sum_{n\geqslant 0} u_n$ converge et $\sum_{n\geqslant 0} v_n$ diverge alors $\sum_{n\geqslant 0} (u_n+v_n)$ diverge.

Séries de nombres positifs

II.1 Généralités

Proposition 6

Soit (u_n) une suite réelle positive. Alors la suite des sommes partielles de la série $\sum u_n$ possède toujours une limite.

De plus elle converge ssi elle est majorée.

II.2Utilisation de fonctions monotones

Théorème 1

Soit $\alpha \in \mathbb{R}$. La série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

II.3Comparaisons

Théorème 2

Soient u, v deux suites réelles **positives**.

 $SI \ \forall n \in \mathbb{N} u_n \leqslant v_n \ et \sum_{n\geqslant 0} v_n \ converge \ alors \sum_{n\geqslant 0} u_n \ converge \ et \sum_0^\infty u_n \leqslant \sum_0^\infty v_n.$ Réciproquement, si $\sum_{n\geqslant 0} u_n \ diverge \ (tend \ vers +\infty, \ on \ est \ dans \ le \ cas \ des \ séries à termes positifs) \ alors \sum_{n\geqslant 0} v_n \ diverge.$

Corollaire 1

Soient u, v deux suites réelles positives.

$$SI \ u_n \leqslant v_n \ APCR \ et \sum_{n\geqslant 0} v_n \ converge \ alors \sum_{n\geqslant 0} u_n \ converge.$$

Cette fois, on ne peut plus comparer les sommes.

Définition 5

Soient $(u_n), (v_n)$ deux suites réelles ou complexes. On dit que (u_n) est dominée par (v_n) ssi il existe $M \in \mathbb{R}^+$ tel que $|u_n| \leq M|v_n|$ (à partir d'un certain rang éventuellement). On note $u_n = O_{+\infty}(v_n)$

Quand (v_n) ne s'annule pas, il revient au même d'imposer $(\left|\frac{u_n}{v_n}\right|)$ est bornée.

Théorème 3

Soient u, v deux suites réelles **positives**.

$$Si\ u_n = O_{+\infty}(v_n)$$
 et $si\ \sum_{n\geqslant 0} v_n$ converge alors $\sum_{n\geqslant 0} u_n$ converge

Corollaire 2

Soient u, v deux suites réelles **positives**.

Si
$$u_n = o_{+\infty}(v_n)$$
 et si $\sum_{n\geqslant 0} v_n$ converge alors $\sum_{n\geqslant 0} u_n$ converge

Corollaire 3

 $Soient \ u,v \ deux \ suites \ r\'eelles \ {\it positives}.$

$$Si\ u_n \underset{+\infty}{\sim} (v_n)\ alors \sum_{n\geqslant 0} u_n\ converge\ ssi\ \sum_{n\geqslant 0} v_n\ converge.$$

Proposition 7

Soit (u_n) une suite STRICTEMENT POSITIVE. Si $\frac{u_{n+1}}{u_n} \underset{+\infty}{\rightarrow} l < 1$ alors $\sum_{n \geq 0} u_n$ converge.

$$Si \xrightarrow[u_n]{u_n} \underset{+\infty}{\rightarrow} l > 1 \ alors \sum_{n \geqslant 0} u_n \ diverge \ vers + \infty.$$

III Absolue convergence

III.1 Série complexes

Définition 6

Soit $\sum u_n$ une série complexe. On dit que cette série est absolument convergente ssi $\sum_{n\geqslant 0} |u_n|$ converge (prononcer module ou valeur absolue suivant les cas).

Théorème 4

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. Si $\sum u_n$ converge absolument alors $\sum u_n$ converge.

III.2 Exemples et contres-exemples