PT 17-18

Table des matières

Ι	Equations scalaires	
	I.1	Equations d'ordre $1 \dots \dots \dots \dots \dots \dots$
	I.2	Equation d'ordre 2
		I.2.1 Rappels sur les équations à coefficients constants
	I.3	Ordre 2, coefficients non constants
II	II.1 II.2	Pèmes différentiels linéaires Cauchy-Lipschitz

I Equations scalaires

I.1 Equations d'ordre 1

Définition 1

On appelle équation différentielle linaire du premier ordre une équation de la forme

$$\forall t \in I \ y'(t) + a(t)y(t) = b(t) \tag{E}$$

avec a,b des fonctions définies sur un intervalle I. L'équation homogène associée à E est

$$\forall t \in I \ y'(t) + a(t)y(t) = 0 \tag{E_H}$$

On appelle solution de E toute **fonction** dérivable $y: I \to \mathbb{K}$ telle que $\forall t \in I \ y'(t) + a(t)y(t) = b(t)$. Les courbes représentatives des fonctions solutions sont appelées courbes intégrales de l'équation.

Le problème consistant trouver une solution de E vérifiant en plus une condition du type $y(t_0)=y_0$ ($t_0\in I$ et $y_o\in \mathbb{K}$) est appel un problème de Cauchy . On parle de condition initiale.

Théorème 1 (Résolution de l'équation homogène)

Soit $a \in \mathcal{C}(I, \mathbb{K})$ et A une **primitive** de a sur I. Pour une fonction $y \in \mathcal{D}(I, \mathbb{K})$ les assertions suivantes sont équivalentes

- 1. $E_H \ \forall t \in I \ y'(t) + a(t)y(t) = 0$
- 2. $\exists \lambda \in \mathbb{K} \ \forall t \in I \ u(t) = \lambda e^{-A(t)}$.

Ainsi, à chaque scalaire $\lambda \in \mathbb{K}$ correspond exactement une fonction solution y et on remarque que toutes les fonctions solutions sont proportionnelles.

Si de plus on donne $t_0 \in I$ et $y_0 \in \mathbb{K}$ pour transformer cette équation en problème de Cauchy en lui adjoignant la condition $y(t_0) = y_0$, alors ce problème de Cauchy possède une unique solution.

Théorème 2 (Cauchy)

Soient $a, b \in \mathcal{C}(I, \mathbb{K})$. Etant donné $x_0 \in I$ et $y_0 \in \mathbb{K}$, il existe une unique solution (sur I) y de l'équation différentielle E qui vérifie $y(x_0) = y_0$.

Proposition 1

L'ensemble des solutions de E sur I est un espace affine de dimension 1, c'est à dire que toute solution y est de la forme $y_p + y_H$ où y_p est l'une des solutions de E (appelée solution particulière) et y_H est une solution quelconque de E_H .

Méthode 1

3

Pour résoudre une équation du type y' + ay = b:

- 1. On commence par résoudre l'équation homogène associe : y' + ay = 0, ce qui se fait par un premier calcul de primitive.
- 2. On détermine une solution particulière de l'équation avec second membre. Soit il y en a une évident, soit via la méthode de variation de la constante. Ceci nécessite un deuxième calcul de primitive.
 - On peut également utiliser le principe de superposition pour chercher deux (ou plus) solutions particulières à des équations de second membre plus simple
- 3. On explicite clairement l'ensemble des solutions demandé (problème de Cauchy, solutions ayant telle ou telle propriété...)

I.2 Equation d'ordre 2

I.2.1 Rappels sur les équations à coefficients constants

On considère l'équation (E_H) sur $\mathbb{R}: ay'' + by' + cy = 0$ où $a, b, c \in \mathbb{K}$ avec $a \neq 0$. L'équation caractéristique associée est $ar^2 + br + c = 0$ d'inconnue $r \in \mathbb{C}$.

Théorème 3 (Résolution de l'équation homogène, cas complexe)

On considère $a,b,c\in\mathbb{C}$ avec $a\neq 0$ et on cherche les solutions de (E_H) à valeurs complexes.

1. Si l'équation caractéristique possède deux racines r_1 et r_2 distinctes dans \mathbb{C} , alors $y \in \mathcal{D}^2(\mathbb{R}, \mathbb{C})$ est solution de (E_H) ssi il existe $\lambda_1, \lambda_2 \in \mathbb{C}$ tels que

$$y: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t} \end{array} \right.$$

2. Si l'équation caractéristique possède une racine double r alors $y \in \mathcal{D}^2(\mathbb{R}, \mathbb{C})$ est solution de (E_H) ssi il existe $\lambda_1, \lambda_2 \in \mathbb{C}$ tels que

$$y: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & (\lambda_1 t + \lambda_2)e^{rt} \end{array} \right.$$

2/3PT 17-18

Si de plus on se donne $t_0 \in I$ et $y_0, y_0 \in \mathbb{C}$, alors il existe une unique solution y de **Méthode 2** l'équation différentielle homogène qui vérifie $y(t_0) = y_0$ et $y'(t_0) = y_0'$.

Théorème 4 (Résolution de l'équation homogène, cas réels)

On considère $a, b, c \in \mathbb{R}$ avec $a \neq 0$ et on cherche les solutions de (E_H) à valeurs réelles.

1. Si l'équation caractéristique possède deux racines r_1 et r_2 distinctes dans \mathbb{R} , alors les solutions à valeurs réelles de (E_H)) sont les fonctions de la forme

$$y: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t} \end{array} \right. \text{ avec } \lambda_1, \lambda_2 \in \mathbb{R}.$$

2. Si l'équation caractéristique possède une racine double r alors les solutions à valeurs réelles de (E_H) sont les fonctions de la forme

$$y: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & (\lambda_1 t + \lambda_2) e^{rt} \end{array} \right. \text{ avec } \lambda_1, \lambda_2 \in \mathbb{R}.$$

3. Si l'équation possède deux solutions non réelles, qui sont donc complexes conjuguées et notée $\alpha \pm i\beta$, alors les solutions à valeurs réelles de (E_H) sont les fonctions de la forme

$$y: \left\{ \begin{array}{ll} I & \to & \mathbb{R} \\ t & \mapsto & e^{\alpha t} (\lambda_1 \cos(\beta t) + \lambda_2 \sin(\beta t)) \end{array} \right. \text{ avec } \lambda_1, \lambda_2 \in \mathbb{R}.$$

De la même manière, un problème de Cauchy réel possède une unique solution.

Théorème 5

1. Soient $x_0 \in I$ et $y_0, y_0' \in \mathbb{K}$. Le problème de Cauchy (sur I)

$$\begin{cases} ay'' + by' + cy &= d \\ y(x_0) &= y_0 \\ y'(x_0) &= y'_0 \end{cases}$$

admet une unique solution.

2. Soient $a, b, c \in \mathbb{K}$ tels que $a \neq 0$ et soit $d \in \mathcal{C}(I, \mathbb{K})$. Alors l'équation différentielle linaire

$$ay''(t) + by'(t) + cy(t) = d(t)$$

admet au moins une solution y_p sur I, et l'ensemble de ses solutions est $y_p + S_0$ où S_0 est l'ensemble des solutions de l'équation homogène associée

Proposition 2 (Principe de superposition)

Soient $a,b,c\in\mathbb{K}$, $a\neq 0$ et $f_1,f_2\in\mathcal{C}(I,\mathbb{K})$. On suppose que $y_1,y_2\in\mathcal{D}(I,\mathbb{K})$ vérifient $ay_1'' + by_1' + cy_1 = f_1$ et $ay_2'' + by_2' + cy_1 = f_2$. Alors pour tous $\lambda_1, \lambda_2 \in \mathbb{K}$, $\lambda_1 y_1 + \lambda_2 y_2$ est solution de l'équation différentielle $ay'' + by' + cb = \lambda_1 f_1 + \lambda_2 f_2$.

Quand le second membre est de la forme $Ae^{\alpha t}$ avec $A, \alpha \in \mathbb{C}$ des constantes, on cherche u_n sous la forme $P(t)e^{\alpha t}$ où P est :

- 1. K une constante si α n'est pas solution de l'équation caractéristique.
- 2. $t \mapsto Kt$ si α est une racine de l'équation caractéristique (ie $e^{\alpha t}$ est l'une des solution de l'équation homogène)
- 3. $t \mapsto Kt^2$ si α est une racine double de l'équation caractéristique.

Dans tous les cas, il faut déterminer la constante K

Ordre 2, coefficients non constants

Théorème 6 (Cauchy-Lipschitz)

Soient $a, b, c \in \mathcal{C}(I, \mathbb{K})$. Soient également $t_0 \in I$, $y_0, y_0' \in \mathbb{K}$. Le problème de Cauchy y'' + a(t)y' + b(t)y = c(t) $y(t_0) = y_0$ possède une unique solution $C^2(I, \mathbb{K})$ définie sur I. $y'(t_0) = y'_0$

Théorème 7

Soient $a, b, c \in \mathcal{C}(I, \mathbb{K})$. L'ensemble des solutions sur I de l'équation y'' + a(t)y' + b(t)y =c(t) est un espace affine de dimension 2. Sa direction est l'ensemble des solutions de l'équation homogène associée.

Plus précisément, les solutions de (E_H) y'' + a(t)y' + b(t)y = 0 sont de la forme $t\mapsto \lambda y_1(t)+\mu y_2(t)$ où y_1,y_2 sont solutions de (E_H) et non proportionnelles et toute solution de (E) est de la forme $y_p + y_H$ où y_p est une solution particulière de (E) et y_H une solution quelconque de (E_H) .

Systèmes différentiels linéaires

II.1 Cauchy-Lipschitz

Définition 2

Définition 2 Soit $Y \in \mathcal{D}(I, \mathbb{K}^n)$ une fonction à valeurs vectorielles. On pose $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$. Soient égale-

ment $B \in \mathcal{C}(I, \mathbb{K}^n)$ et une matrice $A \in \mathcal{M}_n(\mathbb{R})$

- 1. Le système d'équations différentielles Y' = AY + B est appelé un système différentiel linéaire à n équations et n inconnues, à coefficients constants.
- 2. Le système homogène associé est Y' = AY.

PT 17-18

- 3. Résoudre un tel système, c'est trouver toutes les fonctions y_1, \ldots, y_n le vérifiant.
- 4. Soit $t_0 \in I$ et $Y_0 \in \mathbb{K}^n$. On appelle problème de Cauchy (en (t_0, Y_0)) le système $\begin{cases} Y' = AY + B \\ Y(t_0) = Y_0 \end{cases}$

Théorème 8

Avec les notations de la définition, un problème de Cauchy possède une unique solution. Les hypothèses sont : $B \in \mathcal{C}(I, \mathbb{K}^n)$, I est un intervalle infini et $t_0 \in I$.

Théorème 9

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et (H) le système différentiel Y' = AY. L'ensemble \mathcal{S}_H de ses solutions est un sous-espace vectoriel de $\mathcal{C}^{\infty}(I, \mathbb{K}^n)$ de dimension n.

Si $B \in \mathcal{C}(I, \mathbb{K}^n)$, l'ensemble des solution de Y' = AY + B est un sous-espace affine de direction \mathcal{S}_H , c'est à dire que les solutions sont de la même forme que pour les équations scalaires précédentes.

II.2 Cas A diagonalisable

Proposition 3

Soit $A \in \mathcal{M}_n(\mathbb{K})$ diagonalisable dans \mathbb{K} . On note $\lambda_1, \ldots, \lambda_n$ ses valeurs propres et V_1, \ldots, V_n des vecteurs propres associés, qui forment une base de \mathbb{K}^n .

Alors l'ensemble des solutions de Y' = AY est $Vect(t \mapsto e^{\lambda_1 t} V_1, \dots, e^{\lambda_2 t} V_2)$.

II.3 Lien avec les équations scalaires à coefficient constant