Exercice 1

Partie I

- 1. D'après le cours de sup $r_1r_2 = c$ et $r_1 + r_2 = -b$.
- 2. On pose $f: t \mapsto e^{r_i t}$ pour $i \in \{1, 2\}$. Alors pour tout $t \in \mathbb{R}$ (attention ici à ne pas mélanger fonctions et nombres)

$$f''(t) + bf'(t) + cf(t) = (r_i^2 + br_i + c)f(t) = 0$$

car $r_i^2 + br_i + c = 0$ par définition.

Ainsi $t \mapsto e^{r_i t}$ est bien solution de (E_H) sur \mathbb{R} (le \mathbb{R} où on a posé t).

- 3. Soit y une solution de (E_H) sur \mathbb{R} (ne pas oublier de bien préciser qui est le y que vous manipulez). Alors $(y'-r_1y)'-r_2(y'-r_1y)=y''-(r_1+r_2)y'+r_1r_2y=0$ car y est solution de (E_H) .
- 4. Soit y une solution de (E_H). On pose g₁: t → y'(t) − r₁y(t) et g₂: t → y'(t) − r₂y(t).
 D'après la question précédente, g₁ est solution sur ℝ de l'équation différentielle d'ordre 1 (homogène) f' − r₂f = 0 (d'inconnue f). D'après le cours, il existe C₂ ∈ ℝ tel que g₁t → C₂e^{r₂t}.
 En échangeant r₁ et r₂ dans la question précédente (ce qui ne change ni leur somme ni leur produit), il existe C₁ ∈ ℝ tel que g₂: t → C₁e^{r₁t}.
- 5. Soit y une solution de (E_H) . Alors pour $t \in \mathbb{R}$ on a $y'(t) r_1 y(t) = C_2 e^{r_2 t}$ et $y'(t) r_2 y(t) = C_1 e^{r_1 t}$. Par différence, et en divisant par $r_2 r_1 \neq 0$, $y(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où $\lambda = \frac{c_1}{r_1 r_2}$ et $\mu = \frac{C_2}{r_2 r_1}$ sont bien des réels indépendants de t.
- 6. Le but de cette question était subtil. Dans la question précédente, on ne montre pas que TOUTES les fonction de la forme donnée sont bien solution de (E_H) (les questions sont toutes de la forme y solution \Rightarrow ..., et on a jamais la réciproque)
 - (a) On montre facilement que si $f, g \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$ et $\alpha, \beta \in \mathbb{R}$ alors $D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$.
 - (b) $F = \ker(D)$ par définition donc est un sous-espace de $\mathcal{D}^2(\mathbb{R}, \mathbb{R})$ (comme tout noyau qui se respecte).
 - (c) On a déjà F qui est inclus dans l'ensemble donné qui est $\text{Vect}(f_1:t\mapsto e^{r_1t},f_2:t\mapsto e^{r_2,t})$. Or $f_1,f_2\in F$ d'après la question 2 (qui sinon a un but beaucoup plus subtil : montrer que l'on peut poser y une solution de (E_H)). Comme F est un espace vectoriel, $\text{Vect}(f_1,f_1)\subset F$ et finalement on a bien l'égalité demandée.
 - (d) Il s'agit (notation de la question précédente) de savoir si (f_1, f_2) est libre ou non (ces fonctions étant clairement non nulle, on a déjà $\dim(F) \ge 1$). Il y a beaucoup de méthodes possibles pour montrer que cette famille est libre.
 - Posons $\lambda, \mu \in \mathbb{R}$ tels que $\lambda f_1 + \mu f_2 = 0$ (la fonction nulle). Alors, en évaluant en 0 et en 1 (par exemple) on trouve un système à 2 équations et 2 inconnues (λ et μ) dont la seule solution est 0.
 - On suppose $r_1 < r_2$ (qui a échanger les fonctions). Alors $\forall t \in \mathbb{R} \lambda e^{(r_1 r_2)t} + \mu = 0$ et en faisant tendre t vers $+\infty$ on trouve $\mu = 0$ puis $\lambda = 0$.
 - On a $f_1(t) = 1 + r_1 t + o_0(t)$ et $f_2(t) = 1 + r_2 t + o_0(t)$ Si $\lambda f_1 + \mu f_2 = 0$ alors $(\lambda + \mu) + (\lambda r_1 + \mu r_2)t + o_0(t) = 0$ et on obtient encore 2 équations par unicité des coefficients d'un DL.
 - Plus évolué. f_1 est un vecteur propre de l'application linéaire $d: f \mapsto f'$ associée à r_1 et f_2 est un vecteur propre associé à r_2 . Comme $r_1 \neq r_2$, (f_1, f_2) est libre.

Dans tous les cas $\dim(F) = 2$.

- 7. (a) On demandait un ENSEMBLE, et pas la forme des solutions. $\{t \mapsto \lambda e^{4t} + \mu e^{-4t} | \lambda, \mu \in \mathbb{R}\}$ était une écriture convenable.
 - (b) D'après le cours, un problème de Cauchy possède une unique solution. On trouve les seules valeurs de λ et μ en remplaçant y par $\lambda f_1 + \mu f_2$ dans les équations des conditions initiales.

Partie II

- 1. On trouvait "l'intérieur" d'une parabole d'axe (Ox).
- 2. Délicat à rédiger. Premièrement, pour $(u,v) \in \Delta$, $h(u,v) = (\frac{u^2+v^2}{2},v)$ est bien dans D car $2\frac{u^2+v^2}{2} (v)^2 = u^2 > 0$. (étape indispensable, sinon on prouve en fait qu'un partie de Δ , non connue, est en bijection avec D). Soit $(x,y) \in D$. Montrons qu'il existe un unique $(u,v) \in \Delta$ tel que h(u,v) = (x,y). On résout donc h(u,v) = (x,y) pour $(x,y) \in D$ fixé et d'inconnue $(u,v) \in \Delta$. Comme $y^2 < 2x$, on a bien $u = +\sqrt{2x-y^2}$ (on cherche u > 0) et $v = y \in \mathbb{R}$.

Alors
$$h^{-1}: \left\{ \begin{array}{ccc} D & \rightarrow & \Delta \\ (x,y) & \mapsto & (\sqrt{2x-y^2},y) \end{array} \right.$$

h est \mathcal{C}^1 sur Δ sans difficulté. Par contre, il faut bien préciser que pour $(x,y) \in D$, $2x - y^2 > 0$ et donc h^{-1} est \mathcal{C}^1 par composition d'une fonction strictement positive et \mathcal{C}^1 et de la fonction racine carrée.

3. Le même argument montre que $\psi = \varphi \circ h$ est \mathcal{C}^2 par composition. Soit $(u,v) \in \Delta$. $\psi(u,v) = \varphi(\frac{u^2+v^2}{2},v)$. On pose (x,y) = h(u,v). En notant $\frac{\partial \varphi}{\partial x}$ la dérivée partielle par rapport à la première variable de la fonction φ ,

$$\frac{\partial \psi}{\partial u}(u,v) = u \frac{\partial \varphi}{\partial x}(h(u,v)) + 0$$

et donc $\frac{\partial^2 \psi}{\partial u^2}(u,v) = \frac{\partial \varphi}{\partial x}(h(u,v)) + u^2 \frac{\partial^2 \varphi}{\partial x^2}(h(u,v)).$

Finalement, $\frac{\partial^2 \psi}{\partial u^2}(u,v) - 16\psi(u,v) = 0 \iff \frac{\partial \varphi}{\partial x}(h(u,v)) + u^2 \frac{\partial^2 \varphi}{\partial x^2}(h(u,v)) - 16\varphi(h(u,v)) = 0$. Avec les notations (x,y) = h(u,v) et sachant que h est bijective,

$$\forall (u,v) \in \Delta \ \frac{\partial^2 \psi}{\partial u^2}(u,v) - 16\psi(u,v) = 0 \iff \forall (x,y) \in D \ (2x - y^2) \frac{\partial^2 \varphi}{\partial x^2}(x,y) + \frac{\partial \varphi}{\partial x}(x,y) - 16\varphi(x,y) = 0$$

ie ψ est solution de (E') sur Δ si et seulement si φ est solution de (E) sur D.

- 4. D'après 7a, si on fixe v ∈ ℝ la fonction ψ_v : u → ψ(u, v) est de la forme ψ_v : u → λe^{4u} + μe^{-4u}. A priori λ et μ dépendent de la valeur de v donc ψ : (u, v) → λ(v)e^{4u} + μ(v)e^{-4u} οù λ, μ : ℝ → ℝ. On a maintenant envie de prouver que λ, μ sont de classe C² (pour pouvoir vérifier que toutes les fonctions de la forme précédentes sont solutions, voir la partie I). On sait que v → ψ(1, v) est C² et v → ψ(2, v) aussi. On peut alors isoler λ(v) et μ(v) comme combinaison linéaire de ces fonctions C² donc λ, μ sont bien des fonctions C². La vérification du fait que (u, v) → λ(v)e^{4u} + μ(v)e^{-4u} avec λ, μ ∈ C²(ℝ, ℝ) quelconques est bien solution de (E') est immédiate.
- 5. Il suffisant de remplacer u, v par leurs expressions en fonction de x, y, c'est à dire exprimer $\varphi = \psi \circ h^{-1}$.