2

2

Table des matières

Opé	érations vectorielles
I.1	Produit scalaire
I.2	Déterminant

II Lieux géométriques

II.1	Droites																		
II.2	Plan de \mathbb{R}^3																		
II.3	Cercles																		

III Transformations

III.1 Projections et symétries orthogonales
III 2 Rotations

I Opérations vectorielles

On se place dans \mathbb{R}^n avec n=2 ou 3.

I.1 Produit scalaire

I.1.1 Propriétés

Soient $X, Y \in \mathbb{R}^n$ (n = 2 ou 3, mais plus s'il le faut, la définition ne change pas). Le produit scalaire de X et Y est $(X|Y) = {}^t\!XY = \sum_{i=1}^n x_i y_i$, avec des notations évidentes pour les coordonnées dans la base canonique.

- 1. symétrie : (X|Y) = (Y|X). C'est évident sur la formule a l'aide d'une somme. On peut également remarquer que tXY est un nombre et donc ${}^t({}^tXY) = {}^tYX$ est le même nombre.
- 2. Bilinéarité : Soient $\lambda, \mu \in \mathbb{R}, X_1, X_2, Y \in \mathbb{R}^n$

$$(\lambda X_1 + \mu X_2 | Y) = \lambda(X_1 | Y) + \mu(X_2 | Y)$$

$$(Y|\lambda X_1 + \mu X_2) = \lambda(Y|X_1) + \mu(Y|X_2)$$

- 3. positivité : $(X|X) \ge 0$.
- 4. le produit scalaire est défini : $(X|X) = 0 \iff X = 0$.
- 5. On a $||X||^2 = (X|X)$.

Exercice 1

Soient $X, Y \in \mathbb{R}^n$. Montrer que $||X + Y||^2 = ||X||^2 + 2(X|Y) + ||Y||^2$. Calculer $||X - Y||^2$ et (X - Y|X + Y).

Exercice 2

Exprimer (X|Y) en fonction de normes.

I.1.2 Orthogonalité

Deux vecteurs sont orthogonaux ssi leur produit scalaire est nul.

3 I.1.3 Distance

La distance entre deux éléments de \mathbb{R}^n est la norme de leur différence : $\mathrm{d}(X,Y)=\|X-Y\|=\|Y-X\|$

Exercice 3

A quelle condition un parallélogramme est-il un losange? un rectangle? Le prouver!

I.2 Déterminant

I.2.1 Propriétés

- 1. n vecteurs forment une base de \mathbb{R}^n ssi leur déterminant dans la base canonique est non nul.
- 2. le déterminant est linéaire par rapport à chaque colonne
- 3. une base est directe ssi son déterminant dans la base canonique est strictement positif

I.2.2 Interprétation géométrique

- 1. On note \mathcal{B}_c la base canonique de \mathbb{R}^2 . Soient $u, v \in \mathbb{R}^2$. det $\mathcal{B}_c(u, v)$ est l'aire orientée du parallélogramme construit sur u, v.
- 2. Dans \mathbb{R}^3 , le déterminant est le volume orienté du parallélépipè de construit sur les trois vecteurs.

Exercice 4

- 1. Soient A, B, C 3 points non alignés de \mathbb{R}^2 . Exprimer à l'aide d'un déterminant l'aire du triangle ABC.
- 2. Rappelons que le volume d'un tétraèdre est $V=\frac{1}{3}B\times h$ où B est l'aire d'une base et h la hauteur correspondante. Exprimer à l'aide d'un déterminant le volume du tétraèdre ABCD.

Rappel : le volume d'un parallélépipè de est donné par $B \times h$ où B est l'aire de la base.

I.3 Produit vectoriel

On se place obligatoirement dans \mathbb{R}^3 cette fois.

I.3.1 Propriétés

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \land \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}.$$

- 1. Si $u, v \in \mathbb{R}^3$, $u \wedge v$ est orthogonal à u et v.
- 2. $u \wedge v = 0_{\mathbb{R}^3} \iff u \text{ et } v \text{ sont colinéaires.}$
- 3. Si u, v sont non colinéaires, $(u, v, u \wedge v)$ est une base directe de l'espace.
- 4. Le produit vectoriel est bilinéaire.
- 5. le produit vectoriel est anti-symétrique, ie $u \wedge v = -v \wedge u$.

Construction de base orthonormée directe

Si on a $u, v \in \mathbb{R}^3$ tels que $u \neq 0, v \neq 0$ et $u \perp v$, alors on peut poser $u' = \frac{1}{\|u\|} u$ et $v' = \frac{1}{\|v\|} u$ $\frac{1}{\|v\|}.v.$ Alors, si $w'=u'\wedge v',$ la base (u',v',w') est orthonormée directe.

Exercice 5

Construire une base orthonormée directe dont les deux premiers vecteurs forment une base du plan P: x - z = 0.

Lieux géométriques

Droites

II.1.1 Généralités

Les droites (affines) de \mathbb{R}^n sont les ensembles de la forme $\mathcal{D} = A + \text{Vect}(u)$ où A est un point et u un vecteur directeur non nul. D = Vect(u) est la direction de \mathcal{D} .

Cela revient à donner une représentation paramétrique de \mathcal{D} . Par exemple dans le plan, $M: \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{D}$ ssi $\exists t \in \mathbb{R} \begin{cases} x = x_A + tx_u \\ y = y_A + ty_u \end{cases}$ avec des notations évidentes pour les coordonnées de A et u. Dans l'espace, on ajoute juste une troisième coordonnée.

II.1.2 Colinéarité

Avec les notations précédente, un point $M \in \mathbb{R}^n$ est un point de \mathcal{D} ssi \overrightarrow{AM} et u sont colinéaires (penser au déterminant dans \mathbb{R}^2).

II.1.3 Cas de \mathbb{R}^2

Toute droite \mathcal{D} de \mathbb{R}^2 possède une équation de la forme $\mathcal{D}: ax + by + c = 0$ et $\begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur non nul normal à \mathcal{D} , ie orthogonal à tout vecteur directeur de \mathcal{D} , ou encore orthogonal à tout vecteur de la direction de \mathcal{D} .

Ainsi
$$\binom{-b}{a}$$
 est directeur de \mathcal{D} (non nul!).

Exercice 6

- 1. Soit $\mathcal{D}: 2x-y+1=0$. Donner deux points, un vecteur directeur et un vecteur normal de \mathcal{D} .
- 2. Soient $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. Donner une équation, un vecteur directeur et un
- 3. Donner une équation, un deuxième point et un vecteur normal de $\mathcal{D} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} +$ $\operatorname{Vect}\begin{pmatrix}1\\1\end{pmatrix}$

II.1.4 Savoir faire

Déterminer si deux droites sont sécantes, parallèles.

Exercice 7

Exercice 7 Soit $\mathcal{D}: 3x+7y-2=0$. Déterminer la distance de $M_0=\begin{pmatrix} x_0\\y_0 \end{pmatrix}$ à \mathcal{D} . Astuce : si $A,B\in\mathcal{D}$, on pourra calculer l'aire d'un triangle ou d'un parallélogramme.

II.1.5 Cas de \mathbb{R}^3

Les droites de l'espace ne possèdent PAS d'équation cartésienne. A la place, on peut les décrire comme intersection de deux plans.

II.2 Plan de \mathbb{R}^3

II.2.1 Définition

Un plan de \mathbb{R}^3 est un ensemble de la forme $\mathcal{P} = A + \text{Vect}(u, v)$ où A est un point et (u,v) est libre (les vecteurs ne sont pas colinéaires). Sa direction est le sous-espace vectoriel de dimension 2 Vect(u, v).

Ainsi un point M est un point de \mathcal{P} ssi $(\overrightarrow{AM}, u, v)$ est liée (encore une fois, on pensera au déterminant).

II.2.2 Equation

Soit \mathcal{P} un plan de \mathbb{R}^3 . Alors \mathcal{P} possède une équation de la forme $\mathcal{P}: ax+by+cz+d=0$ où $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur non nul, normal à \mathcal{P} .

Exercice 8

On pose $\mathcal{P}: x-2y+z-3=0$. Donner une base et un point de \mathcal{P} .

Exercice 9
Donner une équation de $\mathcal{P} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \text{Vect} \begin{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ ainsi que 2 autres points de ce plan, de telle manière que la donnée des nos trois points détermine \mathcal{P} .

Exercice 10 On pose $\mathcal{D} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \operatorname{Vect} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$. Trouver deux plans dont l'intersection est \mathcal{D} . On pourra les donner par des équations.

II.3 Cercles

II.3.1 Définition

Soit Ω un point d'un plan (\mathbb{R}^2 ou un plan de \mathbb{R}^3). Le cercle de centre Ω et de rayon $R \in]0, +\infty[$ est l'ensemble des points de ce plans à distance R de Ω .

II.3.2 Equation

Dans \mathbb{R}^2 , tout cercle possède une équation de la forme $(x-x_\Omega)^2+(y-y_\Omega)^2=R^2$ où $\begin{pmatrix} x_\Omega \\ y_\Omega \end{pmatrix}$ est le centre et R le rayon.

II.3.3 Tangentes

La tangente en un point M_0 du cercle \mathcal{C} est la droite passant par M_0 et orthogonale à $\overrightarrow{\Omega M_0}$.

Exercice 11

Pour une droite \mathcal{D} donnée, décrire le lieu des centres des cercles tangents à \mathcal{D} en un point $M_0 \in \mathcal{D}$ fixé.

Exercice 12 (Théorème important)

Soient A, B deux points fixés et distincts du plan.

Décrire l'ensemble $E = \{M \in \mathbb{R}^2 | (\overrightarrow{AM}|\overrightarrow{BM}) = 0\}.$

Exercice 13

Décrire en fonction des rayons et des centres le nombre de points d'intersection de deux cercles du plan.

Exercice 14 (Adaptation à l'espace)

Dans un repère orthonormal direct on donne les points $A:(1,2,3),\ B:(2,3,1),\ C:(3,1,2),\ D:(1,0,-1).$

- 1. Chercher le centre et le rayon de la sphère circonscrite à ABCD.
- 2. Chercher les équations cartésiennes des plans (ABC), (ABD), (ACD), (BCD).

III Transformations

III.1 Projections et symétries orthogonales

III.1.1 Principe général

- 1. On projette toujours des vecteurs. Généralement, pour calculer le projeté d'un point M, on projettera en fait un vecteur \overrightarrow{AM} .
- 2. Le but est toujours d'écrire \overrightarrow{AM} comme somme de deux vecteurs. Cette fois les vecteurs sont orthogonaux.

On pourra penser à utiliser le produit scalaire pour simplifier les calculs.

Exercice 15 Calculer l'expression de la projection orthogonale sur $\mathcal{D} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \operatorname{Vect} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$.

III.1.2 Calcul de symétries

On procède comme dans un espace vectoriel. Si on note p(M) le projeté orthogonal de M et s(M) son symétrique orthogonal par rapport à une droite ou un plan passant par A, alors $\overrightarrow{As(M)} = \overrightarrow{AM} - 2\overrightarrow{p(M)M}$ (refaire un schéma).

III.2 Rotations

III.2.1 Dans le plan

La rotation vectorielle d'angle $\theta \in \mathbb{R}$ est l'application $r_{\theta}: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos(\theta)x - \sin(\theta)y \\ \sin(\theta)x + \cos(\theta)x \end{pmatrix}$, ie l'application linéaire canoniquement associée à $R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

Exercice 16

Calculer $R_{\theta}R_{\varphi}$.

4/4III Transformations

III.2.2 Bases orthonormées directes

Toute base orthonormée directe de \mathbb{R}^2 a une matrice de la forme R_{ω} .

Exercice 17

Soit \mathcal{B} une base orthonormée directe de \mathbb{R}^2 . Donner la matrice de r_{θ} dans \mathcal{B} .

III.2.3 Rotation autour d'un point

Pour exprimer la rotation autour d'un point A, on appliquera la rotation vectorielle (de centre O) au vecteur \overrightarrow{AM} .

Exercice 18

Exercice 18
Calculer les coordonnées de l'image de $M = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ par la rotation de centre $A = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ et d'angle $\frac{\pi}{4}$ par deux méthodes : via les matrices et en utilisant les complexes.

Soit $u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Donner une base orthonormée directe de \mathbb{R}^3 de la forme (u, v, w).

III.2.4 Rotation dans l'espace

On se contente ici de rotations vectorielles.

Soit D = Vect(u) une droite de \mathbb{R}^3 et $\theta \in \mathbb{R}$. On impose ||u|| = 1. Alors on peut trouver v, w tels que $\mathcal{B} = (u, v, w)$ soit une base orthonormée directe de \mathbb{R}^3 .

La rotation d'axe D (orienté par u) et d'angle θ est l'application linéaire r_{θ} telle que

$$\operatorname{Mat}_{\mathcal{B}}(r_{\theta}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

III.2.5 Interprétation

Soit P le plan (vectoriel) orthogonal à D. Alors P = Vect(v, w) et dans ce plan, r_{θ} a la matrice d'une rotation du plan d'angle θ .

Exercice 20 Donner la matrice dans la base canonique de la rotation d'axe Vect $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ et d'angle $\frac{\pi}{2}$.

Astuce : si une base est orthonormée, alors l'inverse de sa matrice dans la base canonique est simplement sa transposée.