Devoir surveillé n°5

Durée : 4H. Calculatrices interdites. Les candidats sont invités à porter une attention particulière à la rédaction et la propreté : les copies illisibles ou mal présentées seront pénalisées.

Lisez l'énoncé attentivement et en entier AVANT de commencer chaque exercice.

Exercice 1 (Cours)

- 1. On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. Pourquoi A est-elle diagonalisable? Diagonaliser A en donnant une base de vecteur propres qui soit orthonormée.
- 2. Résoudre sur \mathbb{R} l'équation différentielle y'' + 16y = 0.
- 3. Soit $A=\frac{1}{9}\begin{pmatrix} -8 & 4 & 1\\ 4 & 7 & 4\\ 1 & 4 & -8 \end{pmatrix}$. Caractériser géométriquement l'endomorphisme $f\in\mathcal{L}(\mathbb{R}^3)$ canoniquement associé à A.

Exercice 2

On considère la fonction $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$.

- 1. Donner le domaine de définition \mathcal{D}_f de f.
- 2. Montrer que f est dérivable sur \mathcal{D}_f .
- 3. Montrer que f est développable en série entière sur \mathcal{D}_f (on ne calculera pas ici ce développement en série entière).
- 4. Montrer que f est solution sur \mathcal{D}_f de l'équation différentielle :

$$(1-x^2)f'(x) - xf(x) = 0 (\mathcal{E}_f)$$

5. On recherche le développement en série entière de f sur \mathcal{D}_f sous la forme :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- (a) Donner, pour tout entier naturel non nul n, une relation entre a_{n+1} et a_{n-1} .
- (b) Pour tout entier naturel p, exprimer a_{2p} et a_{2p+1} en fonction de p.
- (c) Donner le développement en série entière de f.

Exercice 3

On se place dans $E = \mathbb{R}[X]$. Pour un polynôme P non nul, on dira que P est unitaire lorsque son coefficient dominant est égal à 1.

Dans tout l'exercice n désigne un entier naturel non nul.

Partie I

- 1. Soit $P \in \mathbb{R}[X]$. Montrer que l'intégrale $\int\limits_0^{+\infty} P(t)e^{-t}\mathrm{d}t$ est convergente.
- 2. Pour $k \in \mathbb{N}$, on note $I_k = \int\limits_0^{+\infty} t^k e^{-t} dt$ (qui converge par la question précédente).

Donner un lien entre I_{k+1} et I_k et en déduire que $I_k = k!$.

3. On considère l'application $<\cdot,\cdot>$ définie sur $\mathbb{R}_n[X]$ par

$$\langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t)dt$$

Montrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}_n[X]$. On notera, pour un polynôme $P \in \mathbb{R}_n[X]$, ||P|| la norme associée.

4. Soient $i, j \in [0, n]$. Calculer $\langle X^i, X^j \rangle$

Partie II

Dans cette partie, on prend n=2, et le produit scalaire sur $\mathbb{R}_2[X]$ est celui défini à la partie précédente.

- 1. Appliquer le procédé de Gram-Schmidt à la famille $(1, X, X^2)$ pour construire une famille orthogonale (Q_0, Q_1, Q_2) telle que pour $k \in [0, 2]$, Q_k soit unitaire (cf préambule) et de degré k.
- 2. Soient $a, b, c \in \mathbb{R}$. Calculer $||aQ_0 + bQ_1 + cQ_2||^2$ en fonction des $||Q_k||^2$ pour $k \in [0, 2]$.
- 3. Soit $(u, v) \in \mathbb{R}^2$. Montrer que

$$\int_0^{+\infty} (t^2 + ut + v)^2 e^{-t} dt = ||Q_2||^2 + (u+4)^2 ||Q_1||^2 + (u+v+2)^2 ||Q_0||^2$$

4. On considère maintenant $H: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (u,v) & \mapsto & \int\limits_0^{+\infty} (t^2+ut+v)^2 e^{-t} \mathrm{d}t \end{array} \right.$

Montrer que H possède un unique point critique en (u_0, v_0) à déterminer.

5. Montrer que H possède un minimum global en (u_0, v_0) . Comment s'interprète le polynôme $-u_0X - v_0$?

Exercice 4

On se place dans l'espace euclidien orienté \mathbb{R}^3 muni de la base orthonormée directe canonique notée $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Pour un endomorphisme f, on note $f^2 = f \circ f$.

On note $<\vec{u},\vec{v}>$ le produit scalaire usuel des vecteurs \vec{u} et \vec{v} de \mathbb{R}^3

Partie I

- 1. On note f la rotation autour de l'axe dirigé (et orienté) par \vec{e}_3 et d'angle $\frac{\pi}{2}$.
 - (a) Décrire l'endomorphisme f^2 .
 - (b) Ecrire la matrice C de f dans la base \mathcal{B} .
 - (c) Les matrices C et C^2 sont-elles diagonalisables dans \mathbb{R} ? dans \mathbb{C} ?
- 2. Soit $\vec{w}' = (1, 1, -4)$. On note g la rotation autour de l'axe dirigé par \vec{w}' et d'angle $\frac{\pi}{2}$.
 - (a) Déterminer un vecteur unitaire \vec{w} colinéaire à \vec{w}' puis deux vecteurs \vec{u} et \vec{v} tels que $\mathcal{B}' = (\vec{u}, \vec{v}, \vec{w})$ forme une base orthonormée directe.
 - (b) Ecrire la matrice de g dans la base \mathcal{B}' puis dans la base \mathcal{B} . On note M_B cette dernière matrice.
 - (c) Les matrices M_B et M_B^2 sont-elles diagonalisables dans \mathbb{R} ?

Partie II

- 1. On considère la rotation r d'axe dirigée par le vecteur unitaire \vec{a} et d'angle θ .
 - (a) Soit \vec{u} un vecteur de norme 1 et orthogonal à \vec{a} . En considérant une bonne base orthonormée directe (et la matrice de r dans cette base), calculer $r(\vec{u})$ en fonction de \vec{a} et \vec{u} .
 - (b) Soit $\vec{v} \in \mathbb{R}^3$. On suppose que \vec{v} est orthogonal à \vec{u} et non nul. Montrer que

$$r(\vec{v}) = \cos(\theta)\vec{v} + \sin(\theta)\vec{a} \wedge \vec{v}$$

Cette relation est-elle encore valable quand $\vec{v} = \vec{0}$?

- (c) Soit $\vec{w} \in \mathbb{R}^3$. Montrer qu'il existe $\vec{u} \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$ tels que $\vec{w} = \vec{v} + \lambda \vec{a}$ et \vec{v} est orthogonal à \vec{a} . En déduire $r(\vec{w})$ en fonction de \vec{a}, \vec{w} et λ .
- (d) Exprimer le scalaire λ de la question précédente en fonction de \vec{w} et \vec{a} .
- 2. Soit \vec{a} un vecteur non nul de \mathbb{R}^3 (de norme quelconque cette fois) et λ un réel. On considère l'application φ de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$\forall \vec{u} \in \mathbb{R}^3 \ \varphi(\vec{u}) = \vec{u} + \lambda < \vec{u}, \vec{a} > \vec{a}$$

- (a) Montrer que φ est un endomorphisme.
- (b) Pour quelle(s) valeur(s) de λ l'application φ est-elle une isométrie?
- (c) Reconnaître alors φ .