Calcul d'intégrales

- Dérivée d'une fonction à valeurs complexes, dérivée de $t\mapsto e^{kt}$ pour $k\in\mathbb{C}$, de $t\mapsto e^{\varphi(t)}$ où φ est à valeurs complexes.
- Intégrale d'une fonction à valeurs complexes.
- Primitives d'une fonction, primitives usuelles.
- Théorème fondamental : si f est continue sur un intervalle I et que $a \in I$ alors $x \mapsto \int_a^x f(t) dt$ est une primitive de f sur I.
- Intégration par parties.
- Changements de variables.
- Intégrales et primitives de fonctions de la forme $t\mapsto \frac{1}{P(t)}$ où P est polynomiale de degré 2.

Démonstrations exigibles

- 1. Calcul de la dérivée de $t\mapsto e^{kt}$ pour $k\in\mathbb{C}$ fixé.
- 2. Théorème d'intégration par parties
- 3. Pour z = a + ib avec $a \in \mathbb{R}, b \in \mathbb{R}^*$, calculer une primitive de $\frac{1}{t-z}$.