PT DM n°2

Devoir maison n°1

A rendre le 04/10

Exercice 1

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=\frac{1}{2}$ et pour tout $n\in\mathbb{N},$ $u_{n+1}=u_n-u_n^2$. On pose également $f:x\mapsto x-x^2$, définie sur [0,1].

- 1. (a) Etudier f sur [0,1]. Vous préciserez le maximum de f en plus de sa monotonie (et du graphe, bien entendu).
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n \leqslant \frac{1}{n+1}$.
 - (c) Quelle est la limite de (u_n) ?
 - (d) Montrer que la série $\sum u_n^2$ converge et calculer la somme $\sum_{n=0}^{+\infty} u_n^2$.
- 2. (a) Pour $n \ge 0$, calculer $S_n = \sum_{k=0}^n \ln\left(\frac{u_{k+1}}{u_k}\right)$.
 - (b) En déduire la nature de la série $\sum \ln \left(\frac{u_{n+1}}{u_n}\right)$.
 - (c) Déterminer la nature de la série $\sum u_n$.
- 3. On pose pour tout $n \in \mathbb{N}$, $w_n = nu_n$.
 - (a) Justifier que pour tout $n \in \mathbb{N}$, $w_{n+1} w_n = u_n(1 (n+1)u_n)$.
 - (b) Justifier que (w_n) converge vers un réel noté l. On pourra étudier sa monotonie dans un premier temps.
 - (c) Montrer que l > 0.
 - (d) Donner un équivalent de u_n en fonction de l.
 - (e) Montrer que la série $\sum (w_{n+1} w_n)$ converge.
 - (f) En déduire que l=1. On pourra raisonner par l'absurde et calculer un équivalent de $w_{n+1}-w_n$.