Convergence

Exercice 1

Déterminer la nature des séries de terme général :

1.
$$u_n = \frac{1}{n^2 \ln(n)}$$
.

6.
$$u_n = \ln(\cos(\frac{1}{n}))$$

2.
$$u_n = \frac{n^2 \ln(n)}{e^n}$$

3. $u_n = \frac{1}{\sqrt{n} \ln(n)}$

$$7. \ u_n = \frac{1}{2 + \sin\left(\frac{n\pi}{4}\right)}.$$

3.
$$u_n = \frac{1}{\sqrt{n} \ln(n)}$$

4. $u_n = 2^{-\ln(\ln(n))}$

$$8. \ u_n = \frac{1}{\binom{2n}{n}}$$

5.
$$u_n = \frac{\ln(n)}{n\sqrt{n}}$$

9.
$$u_n = \frac{n!x^n}{n^n}$$
 pour $x > 0$

Pour conclure complètement sur 9., on pourra attendre l'exercice 4.

On note $H_N = \sum_{n=1}^N \frac{1}{n}$ pour $N \in \mathbb{N} \setminus \{0\}$. Montrer que $H_{2N} - H_N \geqslant \frac{1}{2}$ et retrouver la divergence de la série harmonique.

Exercice 3

On pose $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$.

- 1. Donner un équivalent de $u_{n+1} u_n$ et conclure sur la convergence de la série $\sum (u_{n+1}-u_n).$
- 2. Qu'en déduire pour (u_n) ?
- 3. Donner une équivalent, lorsque $n \to +\infty$, de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$.

Exercice 4

Pour $n \in \mathbb{N}$ on pose $u_n = \ln\left(\frac{n!e^n}{n^n\sqrt{n}}\right)$. Montrer que (u_n) converge en étudiant une série. Question bonus : en utilisant $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$, donner un équivalent de n!

Calcul de sommes

Exercice 5

Déterminer la nature et calculer la somme des séries de terme général :

1.
$$u_n = \ln\left(1 - \frac{1}{n^2}\right)$$
.

3.
$$u_n = \frac{n^2 + n + 1}{n!}$$

2.
$$u_n = \frac{n}{2^n}$$

$$4. \ u_n = e^{-2n} \operatorname{ch}(n)$$

Pour 2, on pourra calculer 2S - S où S est la somme 1 . Pour 3, on pourra utiliser la base (1, X, X(X - 1)) de $\mathbb{R}_2[X]$ pour exprimer le dénominateur.

Exercice 6

Montrer que $\sum_{n\geqslant 1}\frac{(-1)^n}{n^2}$ converge et exprimer sa somme en fonction de $S=\sum_{n=1}^{+\infty}\frac{1}{n^2}$.

Exercice 7

Soit $x \in \mathbb{R}$. Montrer la convergence puis calculer la somme de $\sum_{n \geqslant 0} \frac{\sin(nx)}{2^n}$

Exercice 8

- 1. Trouver $a, b, c \in \mathbb{R}$ tels que $\forall n \in \mathbb{N} \setminus \{0\}$ $u_n = \frac{1}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$.
- 2. En déduire que $\sum u_n$ converge et calculer sa somme.

Exercice 9

Pour $n \in \mathbb{N}$, exprimer $\frac{(-1)^n}{n+1}$ comme l'intégrale d'une fonction simple. Montrer alors que $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{n+1}$ converge et calculer sa somme.

Exercice 10 (\star) On pose $j=e^{\frac{2i\pi}{3}}$. Montrer la convergence de $\sum_{n\geqslant 1}\frac{j^n}{n}$. On pourra étudier les sommes partielles et regrouper par 3.

Calculer ensuite la somme de cette série en exprimant $\frac{1}{n}$ comme l'intégrale d'une fonction simple.

Plus théorique

Exercice 11

Pour $N \in \mathbb{N} \setminus \{0\}$, on pose $H_N = \sum_{n=1}^{N} \frac{1}{n}$.

- 1. Montrer que $\sum_{n\geq 2} \left((\ln(n) \ln(n-1)) \frac{1}{n} \right)$ converge.
- 2. En déduire que $H_n = \ln(n) + \gamma + o_{+\infty}(1)$ où $\gamma \in \mathbb{R}$.
- 3. Montrer que $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge et calculer sa somme.

Exercice 12

Soit (a_n) une suite positive telle que $\sum a_n$ converge. Etudier la convergence des séries $\sum \sqrt{a_n a_{n+1}}, \sum a_n^2, \sum \frac{\sqrt{a_n}}{n}$

^{1.} Pour les 5/2, trouver une méthode sans astuce

Exercice 13 (\star)

Soit $(a_n)_{n\in\mathbb{N}}$ une suite à valeurs positives et $u_0>0$. On pose pour tout $n\in\mathbb{N},\,u_{n+1}=0$ $u_n + \frac{a_n}{u_n}$.

Montrer que (u_n) converge ssi $\sum a_n$ converge.

Exercice 14

- 1. Soit $\alpha \in \mathbb{R}$ et (u_n) une suite strictement positive qui vérifie $\frac{u_{n+1}}{u_n} = 1 + \frac{\alpha}{n} + O_{+\infty}(\frac{1}{n^2})$. On pose $b_n = \ln(n^{-\alpha}u_n)$ pour $n \in \mathbb{N}$. Montrer que (b_n) converge en étudiant une série, puis donner un équivalent de (u_n) .
- 2. Etudier la nature de la série $\sum {2n \choose n} \frac{1}{2^{2n}n}$ en utilisant la méthode précédente, et d'une deuxième manière en utilisant l'équivalent rappelé à l'exercice 3.